Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^3+3x^2+3x+2=0\)
\(\Leftrightarrow x^3+3x^2+3x+1+1=0\)
\(\Leftrightarrow\left(x+1\right)^3+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=-1\)
\(\Leftrightarrow x+1=-1\)
\(\Leftrightarrow x=-2\)
Vậy \(x=-2\)
b ) \(x^4-2x^3+2x-1=0\)
\(\Leftrightarrow x^4-1-2x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1-2x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^3\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a, \(x^3+3x^2+3x+2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
b, \(x^4-2x^3+2x-1=0\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(x^3-x^2\right)-\left(x^2-x\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-x^2\right)\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) \(\left(x+6\right)^2-x\left(x+9\right)=0\)
\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)
\(\Leftrightarrow\)\(3x+36=0\)
\(\Leftrightarrow\)\(x=-12\)
Vậy...
b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)
\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)
\(\Leftrightarrow\)\(23x+12=9\)
\(\Leftrightarrow\)\(x=-\frac{3}{23}\)
Vậy
c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)
\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)
\(\Leftrightarrow\)\(16x^2+2x-14=0\)
\(\Leftrightarrow\)\(8x^2+x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)
Vậy
d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)
\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)
\(\Leftrightarrow\)\(-12x+16=0\)
\(\Leftrightarrow\)\(x=\frac{4}{3}\)
Vậy
e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)
\(\Leftrightarrow\)\(-x^2-3x+10=0\)
\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Vậy
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a. 3x(x-2)-x+2=0
3x(x-2)-(x-2)=0
(3x-1)(x-2)=0
=>\(\hept{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
=> \(\hept{\begin{cases}3x=1\\x=2\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
vậy x thuộc (1/3;2)
\(\left(3x+1\right)^2-x^2+8x-16=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)
\(\left(3x+1\right)^2-x^2+8x-16=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm