Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ge-2\)
\(\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\Rightarrow x=7\left(Tm\right)\)
\(b,\sqrt{x^2+3}=\sqrt{7}\)
\(\Leftrightarrow x^2+3=7\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(c,\sqrt{x}=0\Rightarrow x=0\)
\(d,\sqrt{x}=-3\)
Vì \(\sqrt{x}\ge0;-3< 0\)=> pt vô nghiệm
\(e,3\sqrt{x}=1\)
\(\Rightarrow\sqrt{x}=\frac{1}{3}\Rightarrow x=\frac{1}{9}\)
\(g,4-5\sqrt{x}=-1\)
\(\Rightarrow5\sqrt{x}=5\)
\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
a,\(\sqrt{x+2}=3\Leftrightarrow x+2=3^2\Leftrightarrow x=9-2=7\)
b,\(\sqrt{x^2+3}=\sqrt{7}\Leftrightarrow x^2+3=7\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
c,\(\sqrt{x}=0\Leftrightarrow x=0\)
d,\(\sqrt{x}=-3\Leftrightarrow x=\left(-3\right)^2\Leftrightarrow x=9\)
e,g tương tự các câu trên bạn tự làm ik mk mỏi tay lắm r
\(a,\sqrt{x}=7\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\) \(\sqrt{x}=\sqrt{49}\)
\(\Leftrightarrow\) \(x=49\)
Kết hợp với ĐK x >= 0 \(\Rightarrow\) x=49 (t/m )
vậy x=49
\(\)
\(b,\sqrt{x+1}=11\left(ĐKXĐ:x\ge-1\right)\)
\(\Leftrightarrow\sqrt{x+1}\) = \(\sqrt{121}\)
\(\Leftrightarrow\) \(x+1=121\)
\(\Leftrightarrow\) \(x=120\) kết hợp với ĐK x >= -1 \(\Rightarrow\) x=120 ( t/m )
Vậy x=120
a) \(2x=\sqrt{x}\left(ĐK:x\ne0\right)\)
\(\Leftrightarrow\left(2x\right)^2=x\)
\(\Leftrightarrow4.x^2=x\)
\(\Leftrightarrow4=x:x^2=x.\frac{1}{x^2}=\frac{x}{x^2}=x^{-1}\) ( vô lí vì \(x^{-1}\le0\) )
Vậy : \(x\in\varnothing\)
b) \(\sqrt{x}-1=2\)
\(\Leftrightarrow\sqrt{x}=2+1=3\)
\(\Leftrightarrow x=3^2=9\)
Vậy : \(x=9\)
c) \(3\sqrt{x}-2=7\)
\(\Leftrightarrow3\sqrt{x}-2=7+2=9\)
\(\Leftrightarrow\sqrt{x}=9:3=3\)
\(\Leftrightarrow x=3^2=9\)
Vậy :\(x=9\)
d) \(\sqrt{x-1}+1=3\)
\(\Leftrightarrow\sqrt{x-1}=3-1=2\)
\(\Leftrightarrow x-1=2^2=4\)
\(\Leftrightarrow x=5\)
Vậy : \(x=5\)
a) \(\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\)
\(\Rightarrow x=26\)
b)\(\sqrt{\left(x-\frac{1}{3}\right)^2}=7\)
\(\Leftrightarrow x-\frac{1}{3}=7\)
\(\Rightarrow x=\frac{22}{3}\)
c)\(\sqrt{x+1}+5=3\)
làm tương tự nha bạn
P/s tham khảo nha
a) \(\sqrt{x-1}=5\Leftrightarrow\left(\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow\sqrt{x-1}=25\)
\(\Leftrightarrow x=25+1=26\)
b) \(\sqrt{\left(x-\frac{1}{3}^2\right)}=7\). Đơn giản hóa phép tính:
\(\sqrt{\left(x-\frac{1}{3}\right)^2}\)với \(x-\frac{1}{3}\)
\(\Rightarrow x-\frac{1}{3}=7\)
\(x=7+\frac{1}{3}\Leftrightarrow x=\frac{22}{3}\)
c) \(\sqrt{1+x}+5=3\)
\(\sqrt{1-x}=3-5\)
\(\sqrt{1-x}=-2\)
\(\Leftrightarrow1+x=4\)
\(x=4-1=3\)
Mở rộng thêm:
When \(x=3\) the original equation \(\sqrt{1+x}+5=3\) does not hold true.
We will drop \(x=3\) from the solution set. (tự dịch nha! Vì mình sử dụng chương trình để trợ giúp mình giải
1.
ĐKXĐ: \(x\ge0\) cho tất cả các câu
a) x = 6 (thỏa mãn)
b) vô nghiệm vì VT≥0 mà VP < 0
c) x = 5 (thỏa mãn)
d) \(\sqrt{x}=\left|-31\right|=31\)
x = 961(thỏa mãn)
bài 2 tương tự
Bài 2:
a) \(x^2-23=0\)
\(\Rightarrow x^2=0+23\)
\(\Rightarrow x^2=23\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{23}\\x=-\sqrt{23}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{23};-\sqrt{23}\right\}.\)
b) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7-0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{7}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{49}\)
\(\Rightarrow x=49\)
Vậy \(x=49.\)
Chúc bạn học tốt!
\(\sqrt{x}=x\)
\(\Rightarrow x-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\)
\(x-2\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\sqrt{x+1}=1-x\)
\(\Rightarrow\left|x+1\right|=1-2x+x^2\)
Với \(x\ge-1\) ta có:
\(x+1=1-2x+x^2\)
\(\Rightarrow x+1-1+2x-x^2=0\)
\(\Rightarrow3x-x^2=0\)
\(\Rightarrow x\left(3-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Với \(x< -1\) ta có:
\(-x-1=1-2x+x^2\)
\(\Rightarrow1-2x+x^2+x-1=0\)
\(\Rightarrow3x+x^2=0\)
\(\Rightarrow x\left(3+x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Còn pt vô tỉ tui chưa học
\(a)\) ĐKXĐ : \(x\ge0\)
\(x=\sqrt{x}\)
\(\Leftrightarrow\)\(x-\sqrt{x}=0\)
\(\Leftrightarrow\)\(\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=1\)
\(b)\) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}+2=3\)
\(\Leftrightarrow\)\(\sqrt{x-1}=1\)
\(\Leftrightarrow\)\(x-1=1\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
\(c)\) ĐKXĐ : \(x\ge1\)
\(\sqrt{x-1}=x-1\)
\(\Leftrightarrow\)\(\sqrt{x-1}-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(1-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\1-\sqrt{x-1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
Chúc bạn học tốt ~
Bài 1:
a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)
Vậy \(6< \sqrt{37}\)
b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)
Vậy \(2\sqrt{3}< 3\sqrt{2}\)
p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.
c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)
Mà \(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)
Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)
b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)
c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)
a)x=9
b)x=9
c)x=3
a) x=9
b)x=9
c)x=3