Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy.......
x + 5/2 . x - 3/2 = 9/4
<=> x( 1+ 5/2 ) - 3/2 = 9/4
<=> x . 7/2 = 9/4 + 3/2
<=> x .7/2 = 15/4
<=> x = 15/4 : 7/2
<=> x = 15/14
TA CÓ:
X + 5/2 . X - 3/2 = 9/4
X + 5/2 .X = 9/4 +3/2 = 15/4
(X . 1) + (5/2 . X) = 15/4
X . (1 + 5/2) =15/4
X . 7/2 = 15/4
X = (15/4) / (7/2)
X = 15/14
DỄ ÒM MÀ
BẠN HỌC TRỪNG NÀO MÀ MAI NỘP VẬY
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
Ta có :
\(\left|1-2x\right|-\left|3x+1\right|=0\)
\(\Leftrightarrow\)\(\left|1-2x\right|=\left|3x+1\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}1-2x=3x+1\\1-2x=-3x-1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x+2x=1-1\\-2x+3x=-1-1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=0\\x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=-2\)
Chúc bạn học tốt ~
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1+7y}{5x-4x}=\dfrac{-2y}{x}\)
\(\Leftrightarrow\dfrac{1+5y}{5x}=-\dfrac{2y}{x}\)
\(\Leftrightarrow\dfrac{1+5y}{5}=-2y\)
\(\Leftrightarrow1+5y=-2.y.5\)
\(\Leftrightarrow1+5y=-10y\)
\(\Leftrightarrow5y+10y=1\)
\(\Leftrightarrow15y=1\)
\(\Leftrightarrow y=\dfrac{1}{15}\)
\(\Leftrightarrow x=2\)
Vậy ...
Ta có : \(x^2+1>0\)
Vậy để \(\frac{x^2+1}{x-5}< 0\) thì \(x-5< 0\Rightarrow x< 5\)
\(\left(5x-1\right)\left(2x-\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\2x-\dfrac{1}{3}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{1}{6}\end{matrix}\right.\)
Vậy: ...............
* Trả lời:
\(\left(5x-1\right).\left(2x-\dfrac{1}{3}\right)=0\)
\(\Rightarrow5x-1=0\) hoặc \(2x-\dfrac{1}{3}=0\)
TH1: \(5x-1=0\)
\(\Rightarrow5x=1\)
\(\Rightarrow x=\dfrac{1}{5}\)
TH2: \(2x-\dfrac{1}{3}=0\)
\(\Rightarrow2x=\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{6}\)
Vậy nghiệm của đa thức \(\left(5x-1\right).\left(2x-\dfrac{1}{3}\right)\) là \(x=\dfrac{1}{6};x=\dfrac{1}{5}\)