K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)

\(\Leftrightarrow\dfrac{11}{15}x-\dfrac{2}{5}=0\)

\(\Leftrightarrow\dfrac{11}{15}x=\dfrac{2}{5}\)

\(\Leftrightarrow x=\dfrac{6}{11}\)

Vậy ...

b) \(3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=x+\dfrac{1}{5}\)

\(\Leftrightarrow3x-\dfrac{3}{2}-5x-3=x+\dfrac{1}{5}\)

\(\Leftrightarrow-2x-\dfrac{9}{2}=x+\dfrac{1}{5}\)

\(\Leftrightarrow-3x=\dfrac{47}{10}\)

\(\Leftrightarrow x=\dfrac{-47}{30}\)

Vậy ...

15 tháng 6 2018

a, 1/3 . x + 2/5 . ( x - 1 ) = 0

1/3 . x + 2/5 . x - 2/5 = 0

x . ( 1/3 + 2/5 ) = 0 + 2/5

x . 11/15 = 2/5

x = 2/5 : 11/15

x = 6/11

b, 3 . ( x - 1/2 ) - 5 . ( x + 3/5 ) = x + 1/5

3 . x - 3 . 1/2 - 5 . x + 5. 3/5 = x + 1/5

3x - 3/2 - 5x + 3 = x + 1/5

3x - 5x + x = 1/5 + 3/2 - 3

-3x = -13/10

x = -13/10 : -1

x = -13/10

15 tháng 6 2018

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}=\frac{2.15}{5.11}=\frac{6}{11}\)

Vậy x = 6/11 

15 tháng 6 2018

a) \(\frac{1}{3}.x+\frac{2}{5}.\left(x-1\right)=0\)

\(\frac{1}{3}.x+\frac{2}{5}.x-\frac{2}{5}=0\)

\(x.\left(\frac{1}{3}+\frac{2}{5}\right)-\frac{2}{5}=0\)

\(x.\frac{11}{15}-\frac{2}{5}=0\)

\(x.\frac{11}{15}=\frac{2}{5}\)

\(x=\frac{2}{5}:\frac{11}{15}\)

\(x=\frac{6}{11}\)

b) \(3.\left(x-\frac{1}{2}\right)-5.\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)

\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)

\(3x-5x-\left(\frac{3}{2}+3\right)=x+\frac{1}{5}\)

\(-2x-\frac{9}{2}=x+\frac{1}{5}\)

\(\Rightarrow-2x-x=\frac{1}{5}+\frac{9}{2}\)

\(-3x=\frac{47}{10}\)

\(x=\frac{47}{10}:\left(-3\right)\)

\(x=\frac{-47}{30}\)

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

15 tháng 6 2018

Giải:

Vì:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)

Vì:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)

Dấu "=" xảy ra, khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Vậy ...

15 tháng 7 2018

\(\left(\frac{3}{4}.x-\frac{9}{16}\right).\left(\frac{1}{3}+\frac{-3}{5}:x\right)=0\)

<=> \(\hept{\begin{cases}\frac{3}{4}.x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{4}\\\frac{3}{5x}=\frac{1}{3}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)

\(\left(x-\frac{1}{3}\right)\left(\frac{2}{5}+x\right)>0\)

<=> \(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\)

<=> \(\hept{\begin{cases}x>\frac{1}{3}\\x>\frac{-2}{5}\end{cases}}\)hoặc \(\hept{\begin{cases}x< \frac{1}{3}\\x< \frac{-2}{5}\end{cases}}\)

<=>\(x>\frac{1}{3}\)hoặc \(x< \frac{-2}{5}\)

câu c tương tự nha

học tốt

3 tháng 9 2016

\(3\left(2x-\frac{5}{4}\right)=\left(3-1\frac{1}{2}\right)\left(x-\frac{1}{2}\right)\)

\(\Leftrightarrow6x-\frac{15}{4}=\frac{3}{2}x+\frac{1}{12}\)

\(\Leftrightarrow\frac{9}{2}x+\frac{3}{4}=\frac{15}{4}\)

\(\Leftrightarrow\frac{9}{2}x=3\)

\(\Leftrightarrow x=\frac{2}{3}\)

3 tháng 9 2016

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{6}{11}\)

13 tháng 4 2017

a) x = \(\frac{1}{3}\)

b) x =  \(\frac{1}{42}\)

16 tháng 8 2017

1/3 và 1/42 nha bn

27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)