Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phá trị tuyệt đối ra thành 2 trường hợp:
TH1: |3x - 2| - x = 7
=> 3x - 2 - x =7
=> 2x = 9
=> x = 4,5
TH2: |3x - 2| - x = 7
=> 2 - 3x - x = 7
=> 2 - 4x = 7
=> -5 = 4x
=> x = -1,25
Vậy x = -1,25 hoặc x = 4,5
b) Ta phá trị tuyệt đối:
TH1: |2x - 3| > 5
=> 2x - 3 > 5
=> 2x > 8
=> x > 4 (1)
TH2: |2x - 3| > 5
=> 3 - 2x > 5
=> 2x > -2
=> x > -1 (2)
Từ (1) và (2) ta suy ra x > 4
HAI Ý CÒN LẠI BẠN CŨNG PHÁ TRỊ TUYỆT ĐỐI RA THÀNH 2 TRƯỜNG HỢP NHA !!!
\(a,\frac{-3}{2}-2x+\frac{3}{4}=-1\)
\(\frac{-3}{2}-2x=-1-\frac{3}{4}\)
\(\frac{-3}{2}-2x=\frac{-7}{4}\)
\(2x=\frac{-7}{4}+\frac{-3}{2}\)
\(2x=\frac{-13}{4}\)
\(x=\frac{-13}{4}:2\)
\(x=\frac{-13}{4}.\frac{1}{2}\)
\(x=\frac{-13}{8}\)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Tìm x biết:
5. ( x-1 ) - 7.( x-2 ) = 2x -39
Tìm x thuộc Z biết:
x - 3 - 14.( x-2 )= -3x -3
\(3x+7⋮x-2\)
5 ( x - 1 ) - 7 ( x - 2 ) = 2x - 39
<=> 5x - 5 - 7x + 14 = 2x - 39
<=> 5x - 7x - 2x = -39 + 5 - 14
<=> -4x = -48
<=> x = 12
x - 3 - 14.( x-2 )= -3x -3\(\Rightarrow\chi-3-28-14\chi-28=-3\chi-3\)
\(\Rightarrow\chi-3-28+3=-3\chi-3\)
\(\Rightarrow\chi-28=11\chi\)
\(\Rightarrow\chi-11\chi=28\)
\(\Rightarrow10\chi=28\Rightarrow\chi=2,8\left(kot.m\chi\inℤ\right)\)
c) l x - 5 l = 2x
\(\Leftrightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=5\\x+2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Hok tốt!!!!!!!
Tìm x, biết:
a) |2x + 1| = 17
<=>\(\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\x=-9\end{cases}}\)
a
Dễ thấy theo BĐT trị tuyệt đối ta có:
\(\left|2x+4\right|+\left|3-x\right|\ge\left|2x+4+3-x\right|=\left|x+7\right|\)
Để phương trình có nghiệm thì đẳng thức phải xảy ra tức là:
\(\left(2x+4\right)\left(3-x\right)\ge0\)
b
Tương tự như câu a ta dễ có :
\(\left|3x-2\right|+\left|x-5\right|=\left|3x-2\right|+\left|5-x\right|\ge\left|3x-2+5-x\right|=\left|2x+3\right|\)
Đẳng thức xảy ra tại \(\left(3x-2\right)\left(5-x\right)\ge0\)