Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì |x - 3,5 | luôn lớn hơn hoặc = 0
| 4,5 - x | luôn lớn hơn hoặc =0
Mà |x - 3,5 | + | 4,5 - x | = 0
=> x-3,5=0 và 4,5-x= 0
=> x= 3,5 và x= 4,5 ( vô lí)
=> x thuộc rỗng
b) Vì lx+3l luôn lớn hơn hoặc = 0 vs mọi x
=> 5-x luôn lớn hơn hoặc = 0
=> x luôn lớn hơn hoặc = 5
Ta có: | x + 3 | = 5 - x
=> x+3 = 5-x hoặc x+3 = -5+x
<=> x+x= -3+5 hoặc x-x= -3-5
<=> x= 1 hoặc 0= -8(vô lí)
Vậy x= 1
c) Ôi bạn làm tương tự đi nhé, mik đánh mỏi tay ^^
Bạn ghi ra nhiều vậy người khác nhìn rối mắt không trả lời được đâu ghi từng bài ra thôi
Mình chỉ làm được vài bài thôi, kiến thức có hạn :>
Bài 1:
Câu a và c đúng
Bài 2:
a) |x| = 2,5
=>x = 2,5 hoặc
x = -2,5
b) |x| = 0,56
=>x = 0,56
x = - 0,56
c) |x| = 0
=. x = 0
d)t/tự
e) |x - 1| = 5
=>x - 1 = 5
x - 1 = -5
f) |x - 1,5| = 2
=>x - 1,5 = 2
x - 1,5 = -2
=>x = 2 + 1,5
x = -2 + 1,5
=>x = 3,5
x = - 0,5
các câu sau cx t/tự thôi
Bài 3: Ko hỉu :)
Bài 4: Kiến thức có hạn :)
c) Ta có: \(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\forall x\in Q\\\left|2,5-x\right|\ge0\forall x\in Q\end{matrix}\right.\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\forall x\in Q\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Vậy \(x=\left\{{}\begin{matrix}1,5\\2,5\end{matrix}\right.\).
e) \(\left(x-2\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x-2=\sqrt{1}\\x-2=-\sqrt{1}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\).
Mấy câu kia dễ rồi.
sửa lại ý c của N.Anh
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(\left|x-1,5\right|+\left|2,5-x\right|\ge\left|x-1,5+2,5-x\right|=1\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge1>0\)
mà theo đề thì \(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\Rightarrow\) k có gt \(x\) nào tm yêu cầu đề bài
Bài 2 :
a, x = \(\dfrac{-3}{-11}\) => x =\(\dfrac{3}{11}\)
=>| x | = \(\dfrac{3}{11}\)
=> x= \(\dfrac{3}{11}\) hoặc x = \(\dfrac{-3}{11}\)
Bài 3 :
a, | 4.(x-1)| =12
=> 4.(x-1)=12 hoặc 4.(x-1)=-12
\(\left[{}\begin{matrix}4.\left(x-1\right)=12\\4.\left(x-1\right)=-12\end{matrix}\right.=>\left[{}\begin{matrix}4x-4=12\\4x-4=-12\end{matrix}\right.=>\left[{}\begin{matrix}4x=16\\4x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy x = 4 hoặc x = -2
b,|2x+1|-5 =10
|2x+1|=15
=2x+1=15 hoặc 2x+=-15
+) 2x+1=15 = > 2x = 14 = > x =7
+)2x+1=-15 => 2x= -16 => x = -8
Vậy x=7 hoặc x = -8
c,|2,5-x|-1,3=0
|2,5-x|= 1,3
=>2,5 -x = 1,3 hoặc 2,5 - x = -1,3
+)2,5 - x = 1,3 => x = 1,2
+)2,5-x = -1,3 => x=3,8
Vậy x = 1,2 hoặc x = 3,8
d,-|1,4 - x | - 2 = 0
-|1,4-x|=2
=> -1,4+x = 2 hoặc -1,4+x = -2
+) -1,4+x= 2 => x = 3,4
+)-1,4+x= -2 => x = 0,6
Vậy x = 3,4 hoặc x = 0 ,6
e,| x - 2 | = x
=> x -2 = x hoặc x - 2 = -x
+) x- 2 = x => x-x = -2 => 0 = -2 ( vô lí )
+) x -2 = -x => x+x=2 => 2x =2 => x= 1
Vậy x = 1
f, 2.|2x-3| = \(\dfrac{1}{2}\)
=> |2x-3|= \(\dfrac{1}{4}\)
=>2x-3=\(\dfrac{1}{4}\) hoặc 2x-3=\(\dfrac{-1}{4}\)
+) 2x - 3 = \(\dfrac{1}{4}\)=> 2x= \(\dfrac{13}{4}\)=> x = \(\dfrac{13}{8}\)
+) 2x - 3 = \(\dfrac{-1}{4}\)=> 2x=\(\dfrac{11}{4}\)=> x = \(\dfrac{11}{8}\)
Vậy x=\(\dfrac{13}{8}\) hoặc x=\(\dfrac{11}{8}\)
a) (3x + 1)3 = -27
=> (3x + 1)3 = (-3)3
=> 3x + 1 = -3
=> 3x = -3 - 1
=> 3x = -4
=> x = -4/3
b) |2,5 - x| = 1,3
=> \(\orbr{\begin{cases}2,5-x=1,3\\2,5-x=-1,3\end{cases}}\)
=> \(\orbr{\begin{cases}x=1,2\\x=3,8\end{cases}}\)
c) 0,5 - |x - 3,5| = 0
=> |x - 3,5| = 0,5
=> \(\orbr{\begin{cases}x-3,5=0,5\\x-3,5=-0,5\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
d) Ta có: |x + 2| \(\ge\)0 \(\forall\)x
|x2 - 4| \(\ge\)0 \(\forall\)x
=> |x + 2| + |x2 - 4| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: x + 2 + x2 - 4 = 0
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> x(x + 2) - (x + 2) = 0
=> (x - 1)(x + 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\left(l\right)\\x=-2\end{cases}}\)
\(a,\left(3x+1\right)^3=-27\)
\(\Leftrightarrow3x+1=\sqrt[3]{-27}\)
\(\Leftrightarrow3x+1=-3\)
\(\Leftrightarrow3x=-4\Leftrightarrow x=-\frac{4}{3}\)
b, \(|2,5-x|=1,3\)
\(Th1:2,5-x=1,3\Leftrightarrow x=2,5-1,3\)
\(\Leftrightarrow x=1,2\)
\(Th2:x-2,5=1,3\Leftrightarrow x=1,3+2,5\)
\(\Rightarrow x=3,8\)
c, \(0,5-|x-3,5|=0\)
\(th1:0,5-x+3,5=0\Leftrightarrow4-x=0\)
\(\Rightarrow x=4\)
\(Th2:0,5+x-3,5=0\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)
d, \(|x+2|+|x^2-4|=0\)
\(x+2=0\Leftrightarrow x=-2\)
a) \(\left|0,5x-2\right|-\left|x+\frac{1}{3}\right|=0\)
=> \(\left|0,5x-2\right|=\left|x+\frac{1}{3}\right|\)
=> \(\orbr{\begin{cases}0,5x-2=x+\frac{1}{3}\\0,5x-2=-x-\frac{1}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}-0,5x=\frac{7}{3}\\1,5x=\frac{5}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{14}{3}\\x=\frac{10}{9}\end{cases}}\)
b) \(2x-\left|x+1\right|=\frac{1}{2}\)
=> \(\left|x+1\right|=2x-\frac{1}{2}\) (Đk: \(2x-\frac{1}{2}\ge0\) <=> \(x\ge\frac{1}{4}\))
=> \(\orbr{\begin{cases}x+1=2x-\frac{1}{2}\\x+1=\frac{1}{2}-2x\end{cases}}\)
=> \(\orbr{\begin{cases}-x=-\frac{3}{2}\\3x=-\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{6}\end{cases}}\)
a) |4 (x-1)| = 12
=> 4(x-1) = 12 hoặc -12
Với 4(x-1) = 12
=> x-1 = 12:4
=> x-1 = 3
=> x= 3+1
=> x=4
Với 4(x-1) = -12
x-1 = (-12) : 4
x-1 = -3
x = -2
b) |2x +1| - 5 = 10
|2x +1| = 10 +5
|2x +1| = 15
=> |2x +1| = 15 hoặc -15
Với 2x +1 = 15
2x = 14
=> x= 14 :2
=> x=7
Với 2x+1 = -15
2x = (-15) -1
2x = -16
=> x= (-16) :2
=> x= -8
c: Ta có: \(\left|\dfrac{1}{2}x-2\right|-\left|x+3\right|=0\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-2\right|=\left|x+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-2=x+3\\\dfrac{1}{2}x-2=-x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{-1}{2}=5\\x\cdot\dfrac{3}{2}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\\x=-\dfrac{2}{3}\end{matrix}\right.\)