Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) | x2 + | 6x - 2 || = x2 + 4
<=>x2 + |6x- 2 | = x2 + 4
<=> |6x-2| = 4
<=> \(\orbr{\begin{cases}6x-2=4\\6x-2=-4\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
Vậy x = { 1 ; \(-\frac{1}{3}\)}
a) Ta có: \(A\left(x\right)=2x^5-3x^3+7x-6x^4+2x^3+2\)
\(=2x^5-6x^4-x^3+7x+2\)
Ta có: \(B\left(x\right)=x^5-3x^3+7x-6x^2+x^5+2x^2\)
\(=2x^5-3x^3-4x^2+7x\)
b) Ta có: \(A\left(x\right)-B\left(x\right)\)
\(=2x^5-6x^4-x^3+7x+2-\left(2x^5-3x^3-4x^2+7x\right)\)
\(=2x^5-6x^4-x^3+7x+2-2x^5+3x^3+4x^2-7x\)
\(=-6x^4+2x^3+4x^2+2\)
Ta có: \(A\left(x\right)+B\left(x\right)\)
\(=2x^5-6x^4-x^3+7x+2+2x^5-3x^3-4x^2+7x\)
\(=4x^5-6x^4-4x^3-4x^2+14x+2\)
c) Ta có: C(x)+2A(x)=B(x)
\(\Leftrightarrow C\left(x\right)=B\left(x\right)-2\cdot A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)=2x^5-3x^3-4x^2+7x-2\cdot\left(2x^5-6x^4-x^3-7x+2\right)\)
\(\Leftrightarrow C\left(x\right)=2x^5-3x^3-4x^2+7x-4x^5+12x^4+2x^3+14x-4\)
\(\Leftrightarrow C\left(x\right)=-2x^5+12x^4-x^3-4x^2+21x-4\)
\(\left|5\left(2x+3\right)\right|+\left|2\left(2x+3\right)\right|+\left|2x+3\right|=16\)
\(=8\left(2x+3\right)=16\)
\(\Rightarrow2x+3=2\)
\(\Rightarrow x=-\frac{1}{2}\)
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
1/
a/ Đặt f (x) = x2 - 3
Khi f (x) = 0
=> \(x^2-3=0\)
=> \(x^2=3\)
=> \(x=\sqrt{3}\)
Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.
b/ Đặt g (x) = x2 + 2
Khi g (x) = 0
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> \(x\in\varnothing\)
Vậy x2 + 2 vô nghiệm.
c/ Đặt P (x) = x2 + (x2 + 3)
Khi P (x) = 0
=> \(x^2+\left(x^2+3\right)=0\)
=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)
Vậy x2 + (x2 + 3) vô nghiệm.
d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)
Khi Q (x) = 0
=> \(2x^2-\left(1+2x^2\right)+1=0\)
=> \(2x^2-\left(1+2x^2\right)=-1\)
=> \(2x^2-1-2x^2=-1\)
=> -1 = -1
Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.
e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)
Khi h (x) = 0
=> \(\left(2x-1\right)^2-16=0\)
=> \(\left(2x-1\right)^2=16\)
=> \(2x-1=4\)
=> 2x = 5
=> \(x=\frac{5}{2}\)
Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).
TL:
\(B=2x^2+y^2-2xy-2x+3\)
\(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)
\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)
bạn HUỲNH CHÂU GIANG sai ở trường hợp thứ 1
(2x+3).8=16
=> 2x+3=2
=>2x=-1
=>x=\(\frac{-1}{2}\)
bạn HUỲNH CHÂU GIANG cũng sai ở phần b ) tương tự sai như phần a)