Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x+x2-x3-x4=0
<=>x(x+1)-x3(x+1)=0
<=>x(x+1)(1-x2)=0
<=>x(x+1)(x+1)(x-1)=0
<=>x(x+1)2(x-1)=0
<=>x=0
hoặc (x+1)2=0<=>x=-1
hoặc x-1=0<=>x=1
b)sửa đề 1 chút!!!
2x3+3x2+2x+3=0
<=>x2(2x+3)+(2x+3)=0
<=>(2x+3)(x2+1)=0
<=>2x+3=0(do x2+1>0 với mọi x)
<=>2x=-3
<=>x=-1,5
c)x2-x-12=0
<=>(x2-4x)+(3x-12)=0
<=>(x(x-4)+3(x-4)=0
<=>(x-4)(x+3)=0
<=>x-4=0<=>x=4
Hoặc x+3=0<=>x=-3
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
(3x-1)2-9.(x+2)2=13
<=>(9x2-6x+1)-9.(x2+4x+4)=13
<=>9x2-6x+1-9x2-36x-36=13
<=>-42x-35=13
<=>-42x=13+35
<=>-42x=48
<=>x=-8/7
\(a,x^3+3x^2+3x=0\)
\(\Leftrightarrow x\left(x^2+3x+3\right)=0\)
\(\Leftrightarrow x=0\) Vì \(x^2+3x+3>0\forall x\)
\(b,x^3-3x^2+3x=0\)
\(\Leftrightarrow x\left(x^2-3x+3\right)=0\)
\(\Leftrightarrow x=0\)
\(c,\) bạn làm tương tự nha
c, x^3 + 6x^2 + 12x = 0
=> x(x^2 + 6x + 12) = 0
=> x(x^2 + 6x + 9 + 3) = 0
=> x[(x + 3)^2 + 3) = 0
=> x = 0 hoặc (x + 3)^2 + 3 = 0
=> x = 0 hoặc (x + 3)^2 = -3 (loại vì (x+3)^2 > 0)
vậy x = 0
a, x^3 + 3x^2 + 3x = 0
=> x(x^2 + 3x + 3) = 0
=>x(x^2 + 3x + 2,25 + 0,75) = 0
=> x[(x + 1,5)^2 + 0,75)] = 0
=> x = 0 hoặc (x + 1,5)^2 + 0,75 = 0
=> x = 0 hoặc (x + 1,5)^2 = -0,75 (loại)
vậy x = 0
b, x^3 - 3x^2 + 3x = 0
=> x(x^2 - 3x + 3) = 0
=> x(x^2 - 3x + 2,25 + 0,75) = 0
=> x[(x - 1,5)^2 + 0,75] = 0
=> x = 0 hoặc (x-1,5)^2 + 0,75 = 0
=> x = 0 hoặc (x - 1,5)^2 = -0,75 (loại)
vậy x = 0
a)\(\Leftrightarrow\left(9x^2-30x+25\right)-\left(9x^2+6x+1\right)\)
\(\Leftrightarrow9x^2-30x+25-9x^2-6x-1=8\)
\(\Leftrightarrow9x^2-30x-9x^2-6x=8-25+1\)
\(\Leftrightarrow-36x=-16\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy \(x=\frac{4}{9}\)
b)\(\Leftrightarrow16x^2-6x-\left(16x^2-24x+9\right)=27\)
\(\Leftrightarrow16x^2-6x-16x^2+24x-9=27\)
\(\Leftrightarrow16x^2-6x-16x^2+24x=27+9\)
\(\Leftrightarrow18x=36\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Chúc bạn học tốt.
\(3x^2+3x-6=0\)
\(\Leftrightarrow3x^2+6x-3x+6=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(6x+6\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+6\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+6=0\Rightarrow3x=6\Rightarrow x=2\\x-1=0\Rightarrow x=1\end{cases}}\)
Vậy x=2 và x=1
cau tra loi chuan ne ban
\(3x^2+3x-6=0\)
\(3x^2+6x-3x-6=0\)
\(3x\left(x-1\right)+6\left(x-1\right)=0\)
\(\left(3x+6\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}3x+6=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
vay x=-2 va x=1