Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009
bạn gom các số vào tách số 1/2 ra ngoài làm thừa số,tử 1 chuyển thành 2 lập hiệu xuất hiện tích đối nhau trừ đi phân phối ra là xong
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) = 30/61
( 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) x 2 = 30/61 x 2
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2) = 60/61
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x + 2 = 60/61
1 - 1/x+2 = 60/61
1/x+2 = 1 - 60/61
1/x+2 = 1/61
x + 2 = 61
x = 61 - 2
x = 59
Bài này dễ ý mà, vô cùng đơn giản..........
Ta có:
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}.\)
\(\dfrac{2}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)
\(1\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)
\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}.\)
\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{x}-\dfrac{1}{x}\right)+\left(1-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)
\(0+0+...+0+\left(1-\dfrac{1}{x+2}\right)=\dfrac{2015}{2016}.\)
\(1-\dfrac{1}{x+2}=\dfrac{2015}{2016}.\)
\(\dfrac{1}{x+2}=1-\dfrac{2015}{2016}.\)
\(\dfrac{1}{x+2}=\dfrac{1}{2016}.\)
\(\Rightarrow x+2=2016.\)
\(\Rightarrow x=2016-2=2014.\)
Vậy \(x=2014.\)
~ Học tốt nha bn!!! ~
Bài mik đúng thì nhớ tick mik nha!!!
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}.\frac{x+1}{x+2}=\frac{20}{41}\)
\(\frac{x+1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\frac{x+1}{x+2}=\frac{40}{41}\)
\(x+1=40
\)
\(x=40-1\)
\(x=39\)
Đúng thì ****
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(x=2013\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1007}{2015}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{1007}{2015}.2=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2014}{2015}=\frac{1}{2015}\)
\(\Rightarrow x+2=2015\)
\(\Rightarrow x=2013\)