K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Gọi ƯC của 2n - 1 và 2n + 3 là d

\(\Rightarrow\left(2n+3\right)-\left(2n-1\right)\) chia hết cho d

=> 4 chia hết cho d

\(\Rightarrow d\in\left\{1;2;4;-1;-2;-4\right\}\)

Mặt khác 2n+3 và 2n - 1 1 lẻ

=> d=1 ; d= - 1

Vậy ƯCLN của 2n - 1 và 2n + 3 là 1

18 tháng 8 2016

Ta có: gọi ƯCLN(2n-1 ; 2n+3) là d

ta có 2n+3 chia hết d ; 2n-1 chia hết d

=> 2n+3-(2n-1) chia hết d

=>2n+3-2n+1 chia hết d

=> 4 chia hết d

d thuộc{1;2;3;4}

vì 2n+3 không chia hết cho 2 nên d không phải 2

vì 2n-1 không chia hết cho 3 nên d không phải 3

vì 2n+3 không chia hết cho 4 nên d không phải 4

=> d=1

vậy ƯCLN(2n-1;2n+3) = 1

14 tháng 11 2015

Bạn ơi mình giải nhé:

(2n;2n+2)

2n là số chẵn =>2n chia hết cho 2

2n+2 là số chẵn =>2n+2 chia hết cho 2

Vậy ƯCLN(2n;2n+2)=2

 

 

(2n+1;2n+3)

2n+1 là số lẻ.=>2n+1 chia hết cho 1

2n+3 là số lẻ=>2n+3 chia hết cho 1

[Vì 2n+1 và 2n+3 không thể chia hết cho cùng 1 số ngoại trừ 1 nên là ƯCLN(2n+1;2n+3)=1]

Vậy ƯCLN(2n+1;2n+3)=1

3 tháng 1 2017

gọi m là ƯCLN (2n+3;4n+6)

=> 2n + 3 chia hết cho m

=> 2(2n+3) chia hết cho m

=> 4n+6 chia hết cho m

=> [(4n+6)-(4n+6)]chia hết cho m

còn phần sau thì bn tự lm tiếp nha

b,gọi x là ƯCLN(2n+3 và 4n +8)

=> 2n + 3 chia hết cho m

=> 2(2n+3) chia hết cho m

=> 4n+6 chia hết cho m

=> [(4n+8)-(4n+6)]chia hết cho m

=>2 chia hết cho m

còn phần sau bn tự lm típ nha

chúc bn hok tốt

9 tháng 7 2018

Gọi d là ƯCLN (2n+1, 4n+3)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+2⋮d\\4n+3⋮d\end{cases}}\Rightarrow1⋮d\Rightarrow d=1\\ \)

9 tháng 7 2018

Gọi \(ƯCLN\left(2n+1;4n+3\right)\) là \(d\left(d\ne0\right)\)

Theo bài ra ta có : 

\(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+1\right)⋮d\\4n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+2⋮d\\4n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+3\right)-\left(4n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\)

Vì \(d\)là \(ƯCLN\Rightarrow d=1\)

Vậy ...

17 tháng 8 2016

1) Tìm ưcln(2n + 1  ,  2n + 3)

Ta có: gọi ƯCLN(2n+1  ,  2n+3) là d

=> 2n+1chia hết d ;  2n+3 chia hết d

=>(2n+3-2n+1) chia hết  d

=> 2n+3 - 2n -1  chia hết d

=>2 chia hết cho d

=>ƯC(2n+1 ; 2n+3 ) = Ư(2)= {1;2}

vì 2n+3 và 2n+1 không chia hết cho d nên d=1

vậy ƯCLN(2n+1;2n+3)=1

2)Tìm ưcln(2n + 5,3n + 7)

gọi ƯCLN(2n+5 ; 3n+7) là d

=> 2n+5 chia hết cho d ; 3n+ 7 chia hết cho d

=>6n+15 chia hết cho d ; 6n+14 chia hết cho d

=>(6n+15-6n-14) chia hết cho d

=> 6n+15-6n-14 chia hết cho d

=> 1 chia hết cho d => d=1

vậy ƯCLN(2n+5;3n+7)= 1

18 tháng 8 2016

Thanks bn nhiều.

27 tháng 10 2018

a.1

b.1

c.1

1 tháng 11 2020

Giải thế ai hiểu nổi hả trời???

8 tháng 12 2015

2n=2.n; 2n+2=2.(n+1)

\(\Rightarrow\)ƯCLN(2n;2n+2)=2.n.(n+1), mà n.(n+1) là 2 số tự nhiên liên tiếp và là 2 nguyên tố cùng nhau nên ƯCLN(n;n+1)=1

Vậy: ƯCLN(2n;2n+2)=2.1=2

29 tháng 7 2015

Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:

4n+3 chia hết cho d

2n+3 chia hết cho d => 4n+6 chia hết cho d

=> 4n+6-(4n+3) chia hết cho d

=> 3 chia hết cho d

Giả sử ƯCLN(4n+3; 2n+3) \(\ne\)1

=> 2n+3 chia hết cho 3

=> 2n+3+3 chia hết cho 3

=> 2n+6 chia hết cho 3

=> 2(n+3) chia hết cho 3

=> n+3 chia hết cho 3

=> n = 3k - 3

Vậy để ƯCLN(2n+3; 4n+3) = 1 thì n \(\ne\) 3k-3

10 tháng 12 2014

1/2n+5va3n+7

goi UCLL(2n+5va3n+7)la d ta co

  1. 2n+5 chia het d
  2. 3n+7 chia het d
  • (2n+5)/(3n+7)chia het d
  • 3.(2n+5)/ 2.(3n+7)chia het d
  • (6n+15)/(6n+14)chia het d
  • 1chia het d
  • d=1.vay UCLN(2N+5)/(3N+7)=1
  • NGUYEN TO CUNG NHAU

 


 

10 tháng 12 2014

3/ Gọi d là ước chung của  n + 3 và 2n + 5

Suy ra: 2(n + 3) - (2n + 5) chia hết cho d

2n + 6 - 2n - 5 = 1 chia hết cho d nên d = 1

Vậy UC(n + 3, 2n + 5) = 1