Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sau khi bỏ dấu ngoặc (thực hiện phép nhân) ta sẽ được đa thức
P(x)=anxn+an-1xn-1+...+a1x+a0 (với n=2(100+1000)=2200
Thay x=1 thì giá trị của đa thức là P(1) đúng bằng tổng các hệ số
an+an-1+....+a1+a0
ta có : P(1)=(12-2.1+2)100.(11-3.1+3)1000=1
Vậy tổng các hệ số là 1
Tổng các hệ số đa thức thu được sau khi bỏ dấu ngoặc chính là giá trị của bieetr thức x=1
Ta có
\(\left(1^2-2.1+2\right)^{100}.\left(1^2-3.1+3\right)^{1000}\)
\(=1^{100}.1^{1000}\)
\(=1\)
Vậy tổng của các hệ số đa thức là 1
!
- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :
A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005
=0.(3+4.1+12)2005=0=0.(3+4.1+12)2005=0
Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .
- Tổng các hệ số của 1 đa thức tại x = 1 .
Nên tổng hệ số của đa thức x là :
\(\left(3-1.4+1\right)^{2006}.\left(3+4.1+1\right)^{2007}=0.0=0\)
Vậy tổng hệ số của đa thức trên là 0.
Cái này bạn phải nhớ công thức tổng quát như thế này nè:
Tổng các hệ số của một đa thức P(x) bất kỳ bằng giá trị của đa thức đó tại x=1.
Vật tổng các hệ số của đa thức đó là:
\(A\left(x\right)=\left(3-4\cdot1+1^2\right)^{2004}\cdot\left(3+4\cdot1+1^2\right)^{2005}\)
\(\Rightarrow A\left(x\right)=0\)
Vậy tổng các hệ số của A(x) bằng 0.
Ta có A(1) = 14009 = 1
vậy tổng các hệ số của đa thức là 0