Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(1\dfrac{1}{3}=\dfrac{4}{3}=\dfrac{2^2}{1.3}\) ; \(1\dfrac{1}{8}=\dfrac{3^2}{2.4}\) ; \(1\dfrac{1}{15}=\dfrac{4^2}{3.5}\)
\(1\dfrac{1}{24}=\dfrac{5^2}{4.6}\) ; \(1\dfrac{1}{35}=\dfrac{6^2}{5.7}\)
vậy số hạng thứ 98 là: \(\dfrac{99^2}{98.100}\)
tích của 98 số đầu tiên của dãy số là:
\(\dfrac{\left(2.3.4.5.....98.99\right)^2}{1.2.\left(3.4.5.6.7.....98.99.100\right)^2}=\dfrac{4.\left(3.4.5.....98.99\right)^2}{1.2.10000.\left(3.4.5.....98.99\right)^2}\\ =\dfrac{4}{1.2.10000}=\dfrac{1}{5000}\)
Ta có: 96 số hạng đầu tiên của dãy
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{98}\)
\(\Rightarrow\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{99}{98}\)
=> Biểu thức = ?? ( tự rút gọn)
a) S = 1.2 + 2.3 + 3.4 + ... + 99.100
S có thể được viết lại thành:
S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)
= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98
= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)
Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:
S = n(n+1)(2n+1)/6
Với n = 99, ta có:
S = 99.100.199/6 = 331650
Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:
S = n(n+1)/2
Với n = 98, ta có:
S = 98.99/2 = 4851
Do đó, S = 331650 - 4851 = 326799
b) B = 4924.12517.28−530.749.45529.162.748
B có thể được viết lại thành:
B = (4924.12517.28) / (530.749.45529.162.748)
B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)
B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529
B = 108 / 45529
c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101
C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101
C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)
C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)
C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)
d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018
D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^
a: \(\Leftrightarrow\dfrac{5}{3}+\dfrac{4}{3}< x< 3+\dfrac{1}{5}+1+\dfrac{4}{5}\)
=>3<x<5
=>x=4
b: \(\Leftrightarrow\dfrac{1}{3}:2x=-5+\dfrac{1}{4}=-\dfrac{19}{4}\)
=>\(2x=\dfrac{1}{3}:\dfrac{-19}{4}=\dfrac{1}{3}\cdot\dfrac{-4}{19}=\dfrac{-4}{57}\)
=>x=-2/57
c: \(\Leftrightarrow x\cdot\dfrac{-3}{2}=\dfrac{10}{3}-\dfrac{6}{7}=\dfrac{70-18}{21}=\dfrac{52}{21}\)
=>\(x=\dfrac{-52}{21}:\dfrac{3}{2}=\dfrac{-52}{21}\cdot\dfrac{2}{3}=\dfrac{-104}{63}\)
d: \(\Leftrightarrow70+18< x< 120+70\)
=>88<x<190
hay \(x\in\left\{89;90;...;188;189\right\}\)
Lời giải:
Ta có \(A=\frac{1}{1.1981}+\frac{1}{2.1982}+...+\frac{1}{25.2005}\)
\(\Rightarrow 1980A=\frac{1980}{1.1981}+\frac{1980}{2.1982}+...+\frac{1980}{25.2005}\)
\(\Leftrightarrow 1980A=\frac{1981-1}{1.1981}+\frac{1982-2}{2.1982}+....+\frac{2005-25}{25.2005}\)
\(\Leftrightarrow 1980A=1-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{25}-\frac{1}{2005}\)
\(1980A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+..+\frac{1}{2005}\right)\) (1)
Lại có:
\(25B=\frac{25}{1.26}+\frac{25}{2.27}+...+\frac{25}{1980.2005}\)
\(\Leftrightarrow 25B=\frac{26-1}{1.26}+\frac{27-2}{2.27}+...+\frac{2005-1980}{1980.2005}\)
\(\Leftrightarrow 25B=1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{1980}-\frac{1}{2005}\)
\(25B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{2005}\right)\)
\(25B=\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\) (2)
Từ \((1); (2)\Rightarrow 1980A=25B\Rightarrow \frac{A}{B}=\frac{25}{1980}=\frac{5}{396}\)
a: \(=\dfrac{3}{8}\left(72+\dfrac{1}{5}-51-\dfrac{1}{5}\right)=\dfrac{3}{8}\cdot21=\dfrac{63}{8}\)
b: \(=25\cdot\dfrac{-1}{125}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{2}-\dfrac{1}{2}=-1\)
c: \(=4\left(35+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}-\left(45+\dfrac{1}{6}\right)\cdot\dfrac{-1}{5}\)
\(=\dfrac{-1}{5}\left(140+\dfrac{2}{3}-45-\dfrac{1}{6}\right)=-\dfrac{191}{10}\)
\(1\dfrac{1}{3}=1\dfrac{1}{\left(1+2\right)1};1\dfrac{1}{8}=1\dfrac{1}{\left(2+2\right)2}\)
số thứ 98 = \(1\dfrac{1}{\left(98+2\right)98}=1\dfrac{1}{9800}\)