Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta xét x=0 =>f(0)=(0+2)2014=a1*02014+.....+a2015
=>22014=a2015
b) ta xét x=1 =>f(1)=(1+2)2014=a1*12014+a2*12013+.....+a2015
=>32014=a1+a2+........+a2015
mà a2015=a2014
=>a1+a2+.......+a2014=32014-22014
ta xét x=-1=>f(-1)=(-1+2)2014=a1*(-1)2014+a2(-1)2013+........+a2015
=>a1-a2+a3-a4+............-a2014+a2015=12014
=>a1-a2+............+a2015=1
1) Tìm x
\(2^x+2^{x+4}=544\)
\(\Leftrightarrow2^x\left(1+2^4\right)=544\)
\(\Leftrightarrow2^x.17=544\)
\(\Leftrightarrow2^x=32=2^5\)
<=>x=5
2) \(\frac{x}{z}=\frac{z}{y}\Rightarrow\hept{\begin{cases}\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\\z^2=xy\end{cases}}\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{z^2}{y^2}=\frac{xy}{y^2}=\frac{x}{y}\)
c)Câu hỏi của Hoàng Nhật Mai - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo bài làm ở link này nhé!!! Chúc bạn học tốt!!!
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
Vì x:y:z = 3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2}{18}=\frac{3y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3x^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=4\)
=>(x;y;z)=(6;8;10),(-6;-8;-10)
B2
Ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=......=\frac{a_9-9}{1}\)=\(\frac{a_1+a_2+......+a_9-45}{45}=\frac{90-45}{45}=1\)
=>\(\frac{a_1-1}{9}=1;\frac{a_2-2}{8}=1;.......\frac{a_9-9}{1}=1\)
=>a1=a2=......=a9=10