Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)
\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)
\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)
b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6
b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0
=>m=-5 hoặc m=4/17
1. 2x3 + 4x2 + 5x + 3
= 2x3 + 2x2 + 2x2 + 2x + 3x + 3
= 2x2( x + 1 ) + 2x( x + 1 ) + 3( x + 1 )
= ( x + 1 )( 2x2 + 2x + 3 )
=> ( 2x3 + 4x2 + 5x + 3 ) : ( x + 1 ) = 2x2 + 2x + 3
2.a) 2x3 - 3x2 + x + a chia hết cho x + 2
Ta có đa thức chia có bậc 3, đa thức bị chia có bậc 1
=> Thương bậc 2
Lại có hệ số cao nhất là 2 nên đặt đa thức thương là 2x2 + bx + c
=> 2x3 - 3x2 + x + a chia hết cho x + 2
⇔ 2x3 - 3x2 + x + a = ( x + 2 )( 2x2 + bx + c )
⇔ 2x3 - 3x2 + x + a = 2x3 + bx2 + cx + 4x2 + 2bx + 2c
⇔ 2x3 - 3x2 + x + a = 2x3 + ( b + 4 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+4=-3\\c+2b=1\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-7\\c=15\\a=30\end{cases}}\)
Vậy a = 30
b) x2 - 3x + 3 chia x - a được thương là x + 3 dư 21
=> x2 - 3x + 3 = ( x - a )( x + 3 ) + 21
⇔ x2 - 3x + 3 - 21 = x2 + 3x - ax - 3a
⇔ x2 - 3x - 18 = x2 + ( 3 - a )x - 3a
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}3-a=-3\\-3a=-18\end{cases}}\Leftrightarrow a=6\)
Vậy a = 6
c) Tí mình gửi link nhé
c) https://imgur.com/TzbHKPG
Bạn chịu khó đánh máy tí nhé ;-;
mk lm cách khác, bn tham khảo nhé
\(P\left(x\right)=\left(x+5\right)\left(x+10\right)\left(x+15\right)\left(x+20\right)+2016\)
\(=\left(x^2+25x+100\right)\left(x^2+25x+150\right)+2016\)
Đặt \(x^2+25x+125=a\) ta có:
\(P\left(x\right)=\left(a-25\right)\left(a+25\right)+2016\)
\(=a^2-625+2016\)
\(=a^2-25+1416\)
\(=\left(a-5\right)\left(a+5\right)+1416\)
Thay trở lại ta được: \(P\left(x\right)=\left(x^2+25x+120\right)\left(x^2+25x+130\right)+1416\)
Ta thấy \(\left(x^2+25x+120\right)\left(x^2+25x+130\right)\) \(⋮\) \(x^2+25x+120\)
suy ra \(P\left(x\right)\) chia cho \(x^2+25x+120\) dư \(1416\)
Ta có : P(x) = (x + 5)(x + 20)(x +15)(x + 10)
=> P(x) = (x2 + 25x + 100)(x2 + 25x + 150)
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 150)
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 120) - 20.30
=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150 - 20) - 600
Vì (x2 + 25x + 120)(x2 + 25x + 150 - 20) chia hết cho (x2 + 25x + 120)
Nên : Số dư là : 600