K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(x^2+8x-9\)

\(=x^2-x+9x-9\)

\(=x\left(x-1\right)+9\left(x-1\right)\)

\(=\left(x-1\right)\left(x+9\right)\)

Câu đầu chưa học sorry

4 tháng 10 2018

( x3 - 3x2 + 3x -1 ) : ( x2 - 2x + 1)

= ( x -1 )3 : ( x - 1 ) 2

= x -1

x2 + 8x - 9

= x2 -x + 9x - 9

= x ( x - 1 ) + 9 ( x- 1)

= ( x -1 ) ( x + 9)

6 tháng 1 2018

1) \(\frac{3}{x^2-4y^2}\)

\(=\frac{3}{\left(x-2y\right)\left(x+2y\right)}\)

Phân thức xác định khi \(\left(x-2y\right)\left(x+2y\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x-2y\ne0\\x+2y\ne0\end{cases}}\Rightarrow x\ne\pm2y\)

2) \(\frac{2x}{8x^3+12x^2+6x+1}\)

\(=\frac{2x}{\left(2x+1\right)^3}\)

Phân thức xác định khi \(\left(2x+1\right)^3\ne0\)

\(\Rightarrow2x+1\ne0\)

\(\Rightarrow x\ne-\frac{1}{2}\)

3) \(\frac{5}{2x-3x^2}\)

\(=\frac{5}{x\left(2-3x\right)}\)

Phân thức xác định khi : \(x\left(2-3x\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\2-3x\ne0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{2}{3}\end{cases}}\)

27 tháng 7 2015

Nhiều qua trời 

7 tháng 9 2017

a)  \(x^2\)\(+\)\(6x\)\(+\)\(9\)

\(=\left(x+3\right)^2\)

b)  \(x^3\)\(+\)\(3x^2\)\(+\)\(3x\)\(+\)\(1\)

\(=\left(x+1\right)^3\)

c)  \(8x^3\)\(-\)\(\frac{1}{8}\)

\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)

d)  \(10x\)\(-\)\(25\)\(-\)\(x^2\)

\(=\)\(-x^2\)\(+\)\(10\)\(-\)\(25\)

\(=-\left(x^2-10+25\right)\)

\(=-\left(x-5\right)^2\)

e)  \(\frac{1}{25}x^2\)\(-\)\(64y^2\)

=\(\left(\frac{1}{25}x-8y\right)\left(\frac{1}{5}x+8y\right)\)

17 tháng 7 2015

Nếu bạn muốn có lời giải thì ít thôi @.@

17 tháng 8 2016

Katherine Lilly Filbert nói rất đúng câu hỏi nhiều như vậy ai mà trả lời đc hết cơ chứ

25 tháng 7 2016

\(\left(3x+1\right)^2-4\left(x-2\right)^2=9x^2+6x+1-4\left(x^2-4x+4\right)=9x^2+6x+1-4x^2+16x-16=5x^2+22x-15=\)

\(\left(5x-3\right)\left(x+5\right)\)

25 tháng 7 2016

\(9\left(2x+3\right)^2-4\left(x+1\right)^2=9\left(4x^2+12x+9\right)-4\left(x^2+2x+1\right)=36x^2+108x+81-4x^2-8x-4=32x^2+100x+77\)

\(\left(8x+11\right)\left(4x+7\right)\)

5 tháng 8 2021

haha quá dễ

c, x mũ 2 + 3x - 4 = x^2 + 3 x X -4

c, x mũ 2 + 3x - 18= x^2 + 3xX -18

c, 2x mũ 2 + 3x - 5=  2xX^2 + 3xX -5

c, 3x mũ 2 - 8x + 4= 3 x X^2 - 8 x X + 4

c, 8x mũ 2 + 2x - 3= 8 x X^2 + 2 x X -3

24 tháng 9 2020

1) -25x6 - y8 + 10x3y4 = -( 25x6 - 10x3y4 + y8 ) = -[ ( 5x3 )2 - 2.5x3.y4 + ( y4 ) ] = -( 5x3 - y4 )2

2) 2x( 3x - 5 ) + 10 - 6x = 2x( 3x - 5 ) - 2( 3x - 5 ) = ( 3x - 5 )( 2x - 2 ) = 2( 3x - 5 )( x - 1 )

3) x2 - 9 - x2( x2 - 9 ) = ( x2 - 9 ) - x2( x2 - 9 ) = ( x2 - 9 )( 1 - x2 ) = ( x - 3 )( x + 3 )( 1 - x )( 1 + x )

4) 4x2 - 9 - ( 3x + 1 )( 2x - 3 ) = ( 2x - 3 )( 2x + 3 ) - ( 3x + 1 )( 2x - 3 )

= ( 2x - 3 )[ ( 2x + 3 ) - ( 3x + 1 ) ]

= ( 2x - 3 )( 2x + 3 - 3x - 1 )

= ( 2x - 3 )( 2 - x )

5) 8x3 - y3 - 4x + 2y = ( 8x3 - y3 ) - ( 4x - 2y ) 

= [ ( 2x )3 - y3 ) - 2( 2x - y )

= ( 2x - y )( 4x2 + 2xy + y2 ) - 2( 2x - y )

= ( 2x - y )( 4x2 + 2xy + y2 - 2 )

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7