\(\frac{n+1}{n-2}\)có giá trị là một số nguyên
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Gọi \(A=\frac{n+1}{n-2}\)

Để \(A\inℤ\)thì : \(n+1⋮n-2\)

                            = \(\left(n-2\right)+3⋮\left(n-2\right)\)

                            => \(3⋮\left(n-2\right)\)( vì \(\left(n-2\right)⋮\left(n-2\right)\))

                            => \(n-2\in U\left(3\right)=\){-1; 1; -3; 3}

                            => \(n\in\left\{1;3;-1;5\right\}\)

1 tháng 4 2019

\(\frac{n+1}{n-2}\)\(=\)\(\frac{n-2+3}{n-2}\)\(=\)\(\frac{n-2}{n-2}\)\(+\)\(\frac{3}{n-2}\)\(=\)\(1\)\(+\)\(\frac{3}{n-2}\)

\(để\)\(\frac{n+1}{n-2}\)\(có\)\(giá\)\(trị\)\(nguyên\)\(thì\)\(\frac{3}{n-2}\)\(pk\)\(có\)\(giá\)\(trị\)\(nguyên\)\(=>\)\(3⋮n-2\)

\(=>n-2\inƯ\left(3\right)\)\(=>....\)

\(Từ\)\(ó\)\(tự\)\(suy\)\(ra...\)

\(\frac{n+1}{n-2}\) là số nguyên \(\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)

11 tháng 2 2018

Các bn giúp mk vs mik đg cần gấp lắm nhé

kết bạn mình nha

11 tháng 3 2016

Mình sẽ làm chi tiết như sau nếu bạn ko hiểu thì tùy

\(C=\frac{6n-1}{3n+2}=\frac{\left(6n+4\right)-5}{3n+2}\)

Để C là số nguyên thì \(3n+2\inƯ\left(-5\right)\)

\(\Rightarrow3n+2=-5;3n+2=5;3n+2=1;3n+2=-1\)

Giải từng trường hợp ra thì sẽ có n thôi nhé

4 tháng 5 2017

để A là giá trị nguyên thì 3 chia hét n-1

=> n-1 thuộc Ư(3)

n-1=1                   

n=1+1

n=2

 tự tính tiếp nha

4 tháng 5 2017

A =\(\frac{3}{n-1}\)

Suy ra n -1 thuộc Ư(3) và n - 1 thuộc Z

Ta có Ư(3) = ( -1;-3;1;3 )

Do đó

n - 1 = -1

n      = -1 + 1

n      = 0

n - 1 = -3

n      = -3  + 1

n      = -2

n - 1  =1

n      = 1 + 1

n      = 2

n - 1 = 3

n      = 3 + 1

n      = 4

Vậy n =0;-2;2;4

4 tháng 7 2019

Ta có: B = \(\frac{3n+2}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=3-\frac{1}{n+1}\)

Để B \(\in\)Z <=> 1 \(⋮\)n + 1 <=> n + 1 \(\in\)Ư(1) = {1; -1}

Với: +) n + 1 = 1  => n = 1 - 1 = 0

    +)n + 1 = -1    => n = -1 - 1 = -2

Vậy ...

4 tháng 7 2019

Để \(B\inℤ\)

=> \(3n+2⋮n+1\)

=> \(3n+3-1⋮n+1\)

=> \(3\left(n+1\right)-1⋮n+1\)

Ta có : Vì \(3n+1⋮n+1\)

  => \(-1⋮n+1\)

  => \(n+1\inƯ\left(-1\right)\)

  => \(n+1\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp :

\(n+1\)\(1\)\(-1\)
\(n\)\(0\)\(-2\)

Vậy \(B\inℤ\Leftrightarrow n\in\left\{0;-2\right\}\)