Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^4+y^4-1=xy\left(3-2xy\right)\)
\(\Leftrightarrow x^4+y^4-1=3xy-2x^2y^2\)
\(\Leftrightarrow x^4+2x^2y^2+y^4=3xy+1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=3xy+1\)
Vì \(\left(x^2+y^2\right)^2\ge0\forall x;y\)
\(\Rightarrow3xy+1\ge0\)
\(\Leftrightarrow xy\ge-\frac{1}{3}\)
\(\Leftrightarrow P\ge-\frac{1}{3}\)
Dấu "=" tại x = y = 0
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
a) a là 1 nghiệm \(\Rightarrow\sqrt{2}a^2+a-1=0\Leftrightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)
\(\Rightarrow2a^4-2a+3=a^2-2a+1-2a+3=\left(a-2\right)^2\)
\(\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2}\left(a-2\right)+2a^2\)(1)
mà \(\sqrt{2}a^2+a-1=0\Rightarrow2a^2+\sqrt{2}a-\sqrt{2}=0\)
(1)= \(2a^2+\sqrt{2}a-2\sqrt{2}=-\sqrt{2}\)
...
b) find nghiệm nguyên dương:
\(Pt\Leftrightarrow x^2+2y^2+2xy-2\left(x+2y\right)+1=0\)
\(\Leftrightarrow x^2+2x\left(y-1\right)+\left(2y^2-4y+1\right)=0\)\(\Delta'=\left(y-1\right)^2-\left(2y^2-4y+1\right)=-y^2+2y\ge0\)
\(\Leftrightarrow0\le y\le2\) kết hợp \(y\in N\)=> ....
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)
Với \(y=0\)thì x nguyên tùy ý.
Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)
Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)
Với \(x=-1\) thì \(\Rightarrow y=-1\)
Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay
\(\left(x-8\right)x=k^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)
\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)
Tới đây thì đơn giản rồi b làm tiếp nhé.
Bài 1:
Đặt 2x+1=a
Theo đề, ta có: \(\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=3\)
=>3a^2(a+1)^2=a^2+2a+1+a^2
=>3a^2(a^2+2a+1)-2a^2-2a-1=0
=>3a^4+6a^3+a^2-2a-1=0
=>(a^2+a-1)(3a^2+3a+1)=0
=>\(a\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x+1\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{4};\dfrac{-3-\sqrt{5}}{4}\right\}\)
2/ a/ \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)
Làm tiếp nhé
b/ \(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)
\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)
Làm tiếp nhé
1/ \(x^2+x+19=z^2\)
\(\Leftrightarrow4x^2+4x+76=4z^2\)
\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)
\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)
Tới đây đơn giản rồi làm tiếp đi nhé