Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a2=2x+5ya2=2x+5y
-Nếu x=0⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)
Nếu n=0→5m−1=2⇒5m=3→5m−1=2⇒5m=3 (vô lý)
Nếu n≠0≠0 thì vế phải chia hết cho 5, vế trái không chia hết cho 5→→ loại
Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.
-Nếu x>3
+) Với y lẻ: Đặt y=2k+1 (k∈∈N). Ta có: a2=2x+52k+1≡0+25k.5≡1k.5=5a2=2x+52k+1≡0+25k.5≡1k.5=5(mod 8)⇒⇒a2a2 không là số chính phương→→ loại.
+) Với y chẵn: Đặt y=2k (k∈∈N)⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2(mod 4)⇒2c−1=2⇒c=2⇒x=2+1=3⇒2c−1=2⇒c=2⇒x=2+1=3(loại, vì x>3)
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
(Lời giải có thể hơi khó hiểu một chút)
Đề bài yêu cầu ta giải pt nghiệm nguyên \(2^x+5^y=n^2\)
Ta xét modulo 5. Rõ ràng \(n^2=0,1,4\left(mod5\right)\) nên \(2^x=0,1,4\left(mod5\right)\)
\(2^1=2\left(mod5\right)\), \(2^2=4\left(mod5\right)\), \(2^3=3\left(mod5\right)\), \(2^4=1\left(mod5\right)\) và sau đó quay vòng lại.
Từ đó ta thấy số dư của \(2^n\) khi chia cho 5 lặp lại theo chu kì 4 đơn vị.
Đồng thời, để \(2^x=0,1,4\left(mod5\right)\) thì \(x=0,2\left(mod4\right)\) hay \(x\) chẵn.
Đặt \(x=2k\). Pt thành \(4^k+5^y=n^2\)
-----
Ta chuyển sang xét modulo 3.
Do \(4^k=1\left(mod3\right)\) và \(n^2=0,1\left(mod3\right)\) và \(5^y=\left(-1\right)^y\left(mod3\right)\) nên \(y\) lẻ.
(Chỗ này mình ghi tắt. Bạn thử suy luận xem tại sao \(y\) chẵn không được nhé).
------
Trong pt cần giải ta biến đổi thành: \(5^y=n^2-4^k=\left(n-2^k\right)\left(n+2^k\right)\).
Vế trái chỉ gồm tích các số 5, do đó ta có: \(\hept{\begin{cases}n-2^k=5^b\\n+2^k=5^a\end{cases}}\) và \(b< a,a+b=y\).
Lấy hai vế trừ nhau ta có: \(2^{k+1}=5^a-5^b=5^b\left(5^{a-b}-1\right)\).
Vế trái không chia hết cho 5, nếu \(b\ge1\) thì vế phải sẽ chia hết cho 5 nên không được.
Vậy \(b=0,a=y\) và ta có \(2^{k+1}=5^y-1\).
-----
Ta viết \(5^y-1=\left(5-1\right)\left(5^{y-1}+5^{y-2}+...+5+1\right)\).
Để ý thấy, từ \(5^{y-1}\) tới \(5^0\) có \(y\) số lẻ, tức là tổng của chúng lẻ.
Chứng tỏ tổng này không là lũy thừa của 2, trừ trường hợp tổng đó là 1.
Tức là \(y=1\). Từ việc \(5^y-1=2^{k+1}\) suy ra \(k=1,x=2\).
Vậy \(\left(x;y\right)=\left(2;1\right)\) là nghiệm duy nhất của pt.