Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(t^2=x^2+x+6\)
=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)
=> \(4t^2-\left(2x+1\right)^2=23\)
<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)
Chia các trường hợp: => x và t
Đặt x2 + x + 1 = k2
<=> 4x2 + 4x + 4 = 4k2
<=> 4k2 - 4x2 - 4x + 1 - 5 = 0
<=> (2k)2 - (2x -1)2 = 5
<=> (2k + 2x -1)(2k - 2x - 1) = 5
Vì x, k nguyên nên ta có các trường hợp:
\(TH_1\hept{\begin{cases}2k+2x-1=5\\2k-2x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)
\(TH_2\hept{\begin{cases}2k+2x-1=1\\2k-2x-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\k=2\end{cases}}}\)
\(TH_3\hept{\begin{cases}2k+2x-1=-1\\2k-2x-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)
\(TH_4\hept{\begin{cases}2k+2x-1=-5\\2k-2x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}\)
Vậy các số nguyên x là ( -1; 1 )
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Đặt x2 + 3x + 10 = k2 (k thuộc Z)
<=> 4x2 + 12x + 40 = 4k2
<=> (4x2 + 12x + 9) + 31 = 4k2
<=> (2x + 3)2 + 31 = 4k2
<=> 4k2 - (2x + 3)2 = 31
<=> (2k - 2x - 3)(2k + 2x + 3) = 31 = 1.31
Xét các TH xảy ra:
+) \(\hept{\begin{cases}2k-2x-3=1\\2k+2x+3=31\end{cases}}\)
+) \(\hept{\begin{cases}2k-2x-3=-1\\2k+2x+3=-31\end{cases}}\)
(Tự tính)
Dat \(A=a^2\Rightarrow4x^2+12x+40=\left(2a\right)^2\) \(\Leftrightarrow\left(2x+3\right)^2+31=\left(2a\right)^2\Leftrightarrow\left(2a-2x-3\right)\left(2a+2x+3\right)=31\)
ma 31 nguyen to nen ban co the tu lam tiep o day :)
P/s do muon roi nen mik lam hoi nhanh , mong ban thong cam