Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(3p+4=k^2\left(k\ge4\right)\)
\(\Leftrightarrow k^2-4=3p\)
\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)
Ta thấy \(0< k-2< k+2\) nên có 2TH:
TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.
TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.
Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.
Đặt: \(5p+1=a^3;a\inℕ^∗\)
=> \(5p=a^3-1\)
<=> \(5p=\left(a-1\right)\left(a^2+a+1\right)\)
<=> \(a-1;a^2+a+1\) đều là ước của 5p \(\in\left\{1;5;p;5p\right\}\)
Do: \(a\inℕ^∗\) => \(a-1< a^2+a+1\) Do: p là SNT => \(1< 5p\)
=> Ta thực tế chỉ phải xét 3 trường hợp:
TH1: \(\hept{\begin{cases}a-1=1\\a^2+a+1=5p\end{cases}}\)
=> \(a=2\)
=> \(5p=2^2+2+1=4+2+1=7\)
=> \(p=\frac{7}{5}\) => Loại do p là SNT.
TH2: \(\hept{\begin{cases}a-1=5\\a^2+a+1=p\end{cases}}\)
=> \(a=6\)
=> \(p=6^2+6+1=43\)
THỬ LẠI: \(5p+1=5.43+1=216=6^3\left(tmđk\right)\)
TH3: \(\hept{\begin{cases}a-1=p\\a^2+a+1=5\end{cases}}\)
=> \(a^2+a=4\)
=> Thử \(a=1;a=2\)đều loại. Và \(a>2\) thì \(a^2+a>4\) (LOẠI)
a = 0 cũng loại do a thuộc N*.
Vậy duy nhất có nghiệm \(p=43\) là thỏa mãn điều kiện.
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
\(n+13=a^2,n+33=b^2,\left(b>a\ge0;a,b\inℤ\right)\).
\(b^2-a^2=n+33-\left(n+13\right)=20\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=20\)
Có \(a,b\)là số nguyên nên \(b+a,b-a\)là các ước của \(20\)mà lại có \(\left(b+a\right)+\left(b-a\right)=2b\)là số chẵn nên \(b+a,b-a\)cùng tính chẵn lẻ, do đó ta chỉ có trường hợp:
\(\hept{\begin{cases}b+a=10\\b-a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=6\end{cases}}\)
suy ra \(n=3\).
ta giả sử;
\(\hept{\begin{cases}a^2=n+13\\b^2=n+33\end{cases}\Rightarrow b^2-a^2=20}\) ha y \(\left(b-a\right)\left(b+a\right)=20\Rightarrow\orbr{\begin{cases}b-a=1\\b-a=2\end{cases}\text{ hoặc }b-a=4}\)
với \(\hept{\begin{cases}b-a=1\\b+a=20\end{cases}}\) hoặc \(\hept{\begin{cases}b-a=4\\b+a=5\end{cases}}\)mâu thuẫn với a,b là số tự nhiên
với \(\hept{\begin{cases}b-a=2\\b+a=10\end{cases}\Leftrightarrow\hept{\begin{cases}b=6\\a=4\end{cases}\Rightarrow n=3}}\)
Sau khi thử bằng pascal thì em thấy bài này hình như có vô số nghiệm (Chắc là sai đề). Nhưng nếu ai tìm được công thức tổng quát của k thì hay biết mấy.
Tôi xin bài này để đăng lên trang face ông nhé :)