Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)
Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)
Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).
Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn.
Vậy \(n=0\)hoặc \(n=1\).
Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).
giả sử d = ƯCLN ( m , n ) với d \(\ge\) 1 thì m \(⋮\)d và n \(⋮\) d
suy ra : 3m \(⋮\) d , 2n \(⋮\) d
suy ra 3m - 2n = 1 \(⋮\) d
Bởi vì d \(\ge\)1 mà 1 d thì d = 1,
suy ra m và n nguyên tố cùng nhau
Với n=1=>P=2(thỏa mãn)
Với n>1=>n chẵn=>nnlà số chính phương<=> P tận cùng là 5 hoặc 7
Với P tận cùng 5 chỉ có P=5 thỏa mãn
Với P tận cùng là 7 thì có:17;37;...