K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

ta có: \(28+211+2n=239+2n\)

Đặt \(239+2n=t^2\left(t\in N\right)\) \(\Rightarrow225+14+2n=t^2\)

\(\Rightarrow14+2n=t^2-15^2\Rightarrow2\left(n+7\right)=\left(t+15\right)\left(t-15\right)\)

\(\left(t+15\right)\left(t-15\right)⋮2\) mà 2 là số nguyên tố

nên \(\left(t+15\right)⋮2\)\(\left(t-15\right)⋮2\)

\(\Rightarrow t=2k\pm15\left(k\in N\right)\)

\(\Rightarrow2\left(n+7\right)=\left(2k\pm15\right)^2-15^2\)

\(\Rightarrow2\left(n+7\right)=4k^2\pm60k+15^2-15^2\)

\(\Rightarrow2\left(n+7\right)=4k^2\pm60k\)

\(\Rightarrow2\left(n+7\right)=2\left(2k^2\pm30k\right)\)

\(\Rightarrow n+7=2k^2\pm30k\Rightarrow n=2k^2\pm30k-7\)

Vậy với \(n=2k^2\pm30k-7\)

thì \(28+211+2n\) là số chính phương

30 tháng 3 2017

hình như n = -35; -7; 25

2 tháng 8 2023

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

2 tháng 4 2019

n+1930, n+2539 là số chính phương  

Khi đó sẽ tồn tại số nguyên a, b sao cho:

\(n+1930=a^2,n+2539=b^2\)

Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)

=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)

\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)

Vì a, b nguyên nên a-b và a+b nguyên 

Em kẻ bảng làm tiếp nhé

đề bài là -2n+9 là số nguyên tố chứ

20 tháng 4 2019

Nếu vậy thì giải dùm tớ