Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
b) \(\frac{4n-3}{3n-1}\)là số nguyên
\(\Rightarrow4n-3⋮3n-1\Rightarrow12n-9⋮3n-1\)
\(\Rightarrow4\left(3n-1\right)-5⋮3n-1\Rightarrow3n-1\inƯ\left(5\right)=[\pm1;\pm5]\)
+3n-1=1\(\Rightarrow\)n=\(\frac{2}{3}\)(loại)
+3n-1=-1\(\Rightarrow\)n=0(TM)
+3n-1=5\(\Rightarrow\)n=2(TM)
+3n-1=-5\(\Rightarrow\)n=\(\frac{-4}{3}\)(loại)
TM là thỏa mãn
thảo hải !!!!!!!!!!!!^-^^-^
mi củng hay hị .hihi .mình chộ rành hây-------/-----/
a) \(A=\frac{3n-11}{n-4}=\frac{3.\left(n-4\right)+1}{n-4}=3+\frac{1}{n-4}\)
Để A có giá trị là số nguyên \(\Rightarrow\frac{1}{n-4}\in Z\Rightarrow n-4\inƯ\left(1\right)\)
\(\Rightarrow\orbr{\begin{cases}n-4=1\\n-4=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=5\\n=3\end{cases}}}\)
Vậy n=3; n=5
b) \(B=\frac{4n+1}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}=2+\frac{3}{2n-1}\)
Để B có giá trị là số nguyên \(\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)
Do đó ta có bảng:
2n-1 | -3 | -1 | 1 | 3 |
n | -1 | 0 | 1 | 2 |
Vậy n=-1; n=0; n=1; n=2
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }