Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có SCP chia 8 dư 0;1;40;1;4.
Dễ dàng có: n=2kn=2k
(3k)2+427=t2⇔(t−3k)(t+3k)=6.71
Đặt \(X=\sqrt[3]{4798655-27n}\) với \(20349< n< 47238\)
\(\Rightarrow X^3=A\)thoả mãn \(3514229< 4789655-27n< 4240232\) hay \(351429< X^3< 4240232\)
Tức là: \(152,034921< X< 161,8563987\)
Do X là số tự nhiên nên X chỉ có thể bằng 1 trong các số sau: 153; 154; 155; .... ; 160; 161
Vì: \(X=\sqrt[3]{478965-27n}\) nên \(n=\frac{478965-X^3}{27}\)
Ghi công thức tính trên n
Máy: \(X=X+1:=\frac{478965-X^3}{27}\)
Cho đến khi nhận được các giá trị.
Nguyên dương tương ứng được: \(X=158\Rightarrow A=393944312\)
Với x bắt đầu là 153
P/s: Bn cũng có thể giải bài này bằng máy tính Casio fx-570MS
đổi pt thành : y^2 - (x^2)y + x^4 -81001 = 0
Lập denta của pt ẩn y ta được denta bằng : 324004 - 3 x^4.
Để pt có nghiệm y thì denta lớn hơn hoặc bằng 0
Từ đó suy ra 18 >= x >= -18
t i c k nhé!! 436565667676879867856735623626356562442516576678768987978
\(n+26=a^3\left(a\in N\cdot\right)\)
\(n-11=b^3\left(b\in N\cdot\right)\)
=>\(a^3-b^3=37\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
\(\Rightarrow\left(a-b\right)\&\left(a^2+ab+b^2\right)\) là ước của 37
Mà \(a^2-ab+b^2\ge a-b\ge0\)
\(\int^{a^2+ab+b^2=37}_{a-b=1}\Leftrightarrow\int^{a=b+1}_{\left(b+1\right)^2+b\left(b+1\right)+b^2=37}\Leftrightarrow\int^{a=b+1}_{3b^2+3b-36=0}\Leftrightarrow\int^{a=4}_{b=3}\)(vì a;b>0) thay hoặc a vào chỗ đặt rồi tự tìm nốt