K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2020

\(x^2-5x+7+2m=0\Leftrightarrow x^2-5x+7=-2m\)

Xét hàm \(f\left(x\right)=x^2-5x+7\) trên \(\left[1;5\right]\)

\(-\dfrac{b}{2a}=\dfrac{5}{2}\in\left[1;5\right]\)

\(f\left(1\right)=3\) ; \(f\left(\dfrac{5}{2}\right)=\dfrac{3}{4}\) ; \(f\left(5\right)=7\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb thuộc đoạn đã cho khi và chỉ khi:

\(\dfrac{3}{4}< -2m\le3\)

\(\Leftrightarrow-\dfrac{3}{2}\le m< \dfrac{3}{8}\)

Cả 4 đáp án đều sai là sao ta?

22 tháng 12 2020

tại sao để pt đã cho có 2 nghiệm pb thuộc đoạn [1;5] thì \(\dfrac{3}{4}\le-2m\le3\) ạ?

NV
23 tháng 6 2020

ĐKXĐ: \(x\ge3\)

Đặt \(\sqrt{x-3}=t\ge0\Rightarrow x=t^2+3\)

\(\Rightarrow2\left(t^2+3\right)-t=m\Leftrightarrow2t^2-t+6=m\)

Xét \(f\left(t\right)=2t^2-t+6\) với \(t\ge0\)

\(-\frac{b}{2a}=\frac{1}{4}\Rightarrow f\left(\frac{1}{4}\right)=\frac{47}{8}\Rightarrow f\left(t\right)\ge\frac{47}{8}\)

\(\Rightarrow\) Để pt có nghiệm thì \(m\ge\frac{47}{8}\)

25 tháng 12 2018

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

25 tháng 12 2018

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8

23 tháng 7 2017

\(\left(x^2+\dfrac{8}{27x}+\dfrac{8}{27x}\right)+\left(y^2+\dfrac{8}{27y}+\dfrac{8}{27y}\right)+\dfrac{11}{27}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\ge3\sqrt[3]{\dfrac{8^2}{27^2}}+3\sqrt[3]{\dfrac{8^2}{27^2}}+\dfrac{11}{27}.\dfrac{4}{x+y}\)

\(\ge\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{11}{9}=\dfrac{35}{9}\)

21 tháng 6 2017

1. Theo BĐT AM - GM, ta có:

\(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)

Do đó BĐT ban đầu sẽ đúng nếu ta C/m được

\(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)

Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)

( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )

22 tháng 6 2017

Hơi lâu đúng không mk giải bài 2 cho

17 tháng 4 2018

Chứng minh \(P\ge\dfrac{1}{6}\)

\(\Leftrightarrow\sum\left(\dfrac{x}{16}-\dfrac{x}{y^3+16}\right)\le\dfrac{1}{48}\)

\(\Leftrightarrow\sum\left(\dfrac{xy^3}{y^3+16}\right)\le\dfrac{1}{3}\)

Mà ta có

\(\dfrac{x^3+8+8}{12}\ge x\)

\(\Leftrightarrow x\le\dfrac{x^3+16}{12}\)

\(\Rightarrow\sum\left(\dfrac{xy^3}{y^3+16}\right)\le\sum\left(\dfrac{xy^2}{12}\right)\)

Giờ chứng minh

\(xy^2+yz^2+zx^2\le4\)

19 tháng 4 2018

không biết làm thì đừng cố

13 tháng 1 2019

3.

\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

áp dụng bất đẳng thức cosi

+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)

......

tương tự với 2 cái sau