Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x 2 - 4 x + 6 + 3 m = 0 ⇔ 3 m = - x 2 + 4 x - 6
Số nghiệm của phương trình x 2 - 4 x + 6 + 3 m = 0 là số giao điểm của đường thẳng y = 3 m và parabol y = - x 2 + 4 x - 6
Parabol y = - x 2 + 4 x - 6 có hoành độ đỉnh x = 2 ∈ - 1 ; 3 , hệ số a = - 1 < 0 nên đồng biến khi x < 2 và nghịch biến khi x > 2 .
Bảng biến thiên của hàm số y = - x 2 + 4 x - 6 trên đoạn - 1 ; 3 :
Từ bảng biến thiên ta thấy, nếu phương trình có nghiệm trên đoạn - 1 ; 3 thì đường thẳng y = 3 m phải cắt parabol tại ít nhất 1 điểm có hoành độ thuộc đoạn - 1 ; 3 .
Phương trình có nghiệm thuộc đoạn - 1 ; 3 ⇔ - 11 ≤ 3 m ≤ - 2 ⇔ − 11 3 ≤ m ≤ − 2 3
Đáp án cần chọn là: B
\(C_RB=R\text{B}=\left(-\infty;3m-1\right)\cup\left(3m+3;+\infty\right)\)
Để A là tập con của \(C_RB\) thì
3m-1>=m
=>2m>=1
=>m>=1/2
Phương trình viết lại m 2 - 4 x = 3 m - 6
Phương trình đã cho vô nghiệm khi m 2 − 4 = 0 3 m − 6 ≠ 0 ⇔ m = ± 2 m ≠ 2 ⇔ m = − 2
Do đó, phương trình đã cho có nghiệm khi m ≠ −2.
Đáp án cần chọn là: B
\(\left(m^2-4\right)x=3m+6\Leftrightarrow\left(m^2-4\right)x-3m-6=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\-3m-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
1.
\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
Khi đó pt đã cho tương đương:
\(x^2+2x+2m=\left(2x+1\right)^2\)
\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)
\(\Leftrightarrow3x^2+2x+1=2m\)
Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
3.
Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)
Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)
Ta có:
\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)
\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)
\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)
Phương trình đã cho nghiệm đúng với hay phương trình có vô số nghiệm khi
m 2 − 3 m + 2 = 0 − ( m 2 + 4 m + 5 ) = 0 ⇔ m = 1 m = 2 m ∈ ∅ ⇔ m ∈ ∅
Đáp án cần chọn là: D
Phương trình có hai nghiệm phân biệt ⇔ ∆ ' > 0
⇔ m 2 - 7 m + 16 > 0 ⇔ m − 7 2 2 + 15 4 > 0 , ∀ m ∈ R
Theo định lí Viet, ta có:
x 1 . x 2 = 3 m − 5 3 ; x 1 + x 2 = 2 ( m + 1 ) 3 x 1 = 3 x 2 ⇔ x 1 = m + 1 2 , x 2 = m + 1 6 x 1 . x 2 = 3 m − 5 3
⇒ m + 1 2 12 = 3 m − 5 3 ⇔ m 2 − 10 m + 21 = 0 ⇔ m = 3 m = 7
Đáp án cần chọn là: C
\(A\cap B=\varnothing\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m+1< 0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m< -1\end{matrix}\right.\)
Ta có nên làm bánh mì sữa không, ngồi trong phòng mọc nấm mất... Nhưng mà hong có men, haizz, lười quá