K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

\(P=\dfrac{x^4+x^3-3x-1}{x^2+x+1}=\dfrac{\left(x^2-1\right)\left(x^2+x+1\right)-2x}{x^2+x+1}=x^2-1-\dfrac{2x}{x^2+x+1}\)

Vì x \(\in Z\) nên để P \(\in Z\) thì : \(\dfrac{x}{x^2+x+1}\in Z\) 

Đặt \(A=\dfrac{x}{x^2+x+1}\) . Với x = 0 ; ta có : \(P=-1\in Z\)

Với x khác 0 ; ta có : \(A=\dfrac{1}{x+\dfrac{1}{x}+1}\)

Nếu x > 0 ; ta có : \(0< A\le\dfrac{1}{3}\) ( vì \(x+\dfrac{1}{x}\ge2\) )  => Ko tồn tại g/t nguyên của A (L) 

Nếu x < 0 ; ta có : \(x+\dfrac{1}{x}\le-2\)  \(\Rightarrow x+\dfrac{1}{x}+1\le-1\) 

Suy ra : \(0>A\ge\dfrac{1}{-1}=-1\)  \(\Rightarrow A=-1\) 

" = " \(\Leftrightarrow x+\dfrac{1}{x}=-2\Leftrightarrow x=-1\)

x = -1 ; ta có : P = 2 \(\in Z\) (t/m) 

Vậy ... 

 

 

29 tháng 5 2017

Bạn viết rõ đề bài đi bạn, 13/3x + 4 hay 13/ (3x + 4) vậy??

29 tháng 5 2017

ý của mình là A=(6x^2-9x-13)/(3x-4)

3 tháng 6 2018

Baif1:

 Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :

\(\frac{x}{x-6}-\frac{6}{x-9}>1\)

\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)

\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)

\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)

Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)

Xét hai trường hợp:

TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)

\(\Leftrightarrow6< x< 9\)(tm)(1)

TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)

Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)

Bài 2:

Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)

\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)

\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)

\(\Leftrightarrow9n\ge-33\)

\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)

Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)

Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)

Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ 

29 tháng 9 2020

Đặt: \(t^2=x^2+x+6\)

=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)

=> \(4t^2-\left(2x+1\right)^2=23\)

<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)

Chia các trường hợp: => x và t

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)