Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ pt trên suy ra \(y=x+1\) thay xuông dưới:
\(\left(m-1\right)x^2+\left(x+1\right)^2+x-2\left(x+1\right)+2m-3=0\)
\(\Leftrightarrow mx^2+x+2m-4=0\)
Đặt \(f\left(x\right)=mx^2+x+2m-4=0\)
Để phương trình có 2 nghiệm thỏa mãn \(x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\left(2m-4\right)>0\\a.f\left(2\right)=m\left(4m+2+2m-4\right)>0\\\frac{x_1+x_2}{2}=\frac{-1}{2m}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-8m^2+16m+1>0\\m\left(6m-2\right)>0\\\frac{4m+1}{2m}>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{3}< m< \frac{4+3\sqrt{2}}{4}\)
Bạn coi lại đề, ko có khái niệm 2 tập hợp lớn hơn / nhỏ hơn nhau
Nên \(D_2< D_1\) là vô nghĩa
Với giá trị nào của m thì phương trình (m-1)x2-2(m-2)x+m-3=0 có 2 nghiệm x1,x2 thỏa mãn x1+x2+x1x2<1
m=1 loại
m khác 1:
\(\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)=1>0\)
Theo hệ thức viét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-2\right)}{m-1}\\x_1.x_2=\frac{m-3}{m-1}\end{matrix}\right.\)
x1+x2+x1.x2-1=\(\frac{2m-6}{m-1}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\)
Vậy m>3 hoặc m<1 thỏa mãn
Chọn D