Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
TH1: m+1=0 <=> m=-1
Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại
TH2: m+1 khác 0 <=> m khác -1
Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x
<=> {a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0{a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0
<=>{m>−1m2−2m−3≥0⇔⎧⎪⎨⎪⎩m>−1[m<−1m>3⇔m>3{m>−1m2−2m−3≥0⇔{m>−1[m<−1m>3⇔m>3
Vậy m>3 thì...
TH1: m+1=0 <=> m=-1
Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại
TH2: m+1 khác 0 <=> m khác -1
Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x
<=> \(\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-\left(m+1\right)\right]^2-4\left(m+1\right)\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m>-1\\m^2-2m-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m>3\)
Vậy m>3 thì...
Để \(ax^2+bx+c\ge0\) \(\forall x\in R\) thì \(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3-m>0\\\Delta'=\left(m+3\right)^2-\left(3-m\right)\left(m+2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\2m^2+5m+3\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\-\dfrac{3}{2}\le m\le-1\end{matrix}\right.\)
\(\Rightarrow-\dfrac{3}{2}\le m\le-1\)
Phản ví dụ: với \(x=1\) BPT tương đương: \(0>0\) (ktm)
Vậy ko tồn tại m để BPT đúng với mọi x
Để bất phương trình luôn có nghiệm thì
\(\left\{{}\begin{matrix}\left(m-1\right)^2-4\cdot1\cdot5< 0\\1>=0\end{matrix}\right.\Leftrightarrow\left(m-1\right)^2< 20\)
\(\Leftrightarrow-2\sqrt{5}+1< x< 2\sqrt{5}+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2>0\left(luôn-đúng\right)\\\Delta'< 0\end{matrix}\right.\) \(\Leftrightarrow\left(m+1\right)^2-\left(m^2+2\right)< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\)