K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Điều kiện xác định L:

\(\begin{cases}0< 2x+1\ne1\\0< 3x+1\ne1\end{cases}\)  \(\Leftrightarrow\begin{cases}x\ge-\frac{1}{3}\\x\ne0\end{cases}\)

Vậy tập xác định : \(D=\)[\(-\frac{1}{3};+\infty\))\\(\left\{0\right\}\)

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

4 tháng 5 2016

Điều kiện xác định \(\begin{cases}x< 3x+2\ne1\\1-\sqrt{1-4x}>0\\1-4x\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x>-\frac{2}{3},x\ne-\frac{1}{3}\\1>1-4x\\x\le\frac{1}{4}\end{cases}\)

                                                          \(\Leftrightarrow\begin{cases}x>-\frac{2}{3};x\ne-\frac{1}{3}\\x>0\\x\le\frac{1}{4}\end{cases}\)

                                                          \(\Leftrightarrow0< x\le\frac{1}{4}\)

Vậy tập xác định : \(D=\)(0;\(\frac{1}{4}\)]

14 tháng 5 2016

\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)

Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)

             \(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\)  \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)

              \(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)

              \(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số

14 tháng 5 2016

a. \(y=\left(3^x-9\right)^{-2}\)

Điều kiện : \(3^x-9\ne0\Leftrightarrow3^x\ne3^2\)

                                  \(\Leftrightarrow x\ne2\)

Vậy tập xác định là \(D=R\backslash\left\{2\right\}\)

 

b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)

Điều kiện : \(\log_{\frac{1}{3}}\left(x-3\right)-1\ge0\Leftrightarrow\log_{\frac{1}{3}}\left(x-3\right)\ge1=\log_{\frac{1}{3}}\frac{1}{3}\)

                                               \(\Leftrightarrow0< x-3\le\frac{1}{3}\)

                                               \(\Leftrightarrow3< x\le\frac{10}{3}\)

Vậy tập xác định \(D=\) (3;\(\frac{10}{3}\)]

 

c. \(y=\sqrt{\log_3\sqrt{x^2-3x+2}+4-x}\)

Điều kiện :

                 \(\log_3\sqrt{x^2-3x+2}+4-x\ge0\Leftrightarrow x^2-3x+2+4-x\ge1\)

                                                                 \(\Leftrightarrow\sqrt{x^2-3x+2}\ge-x-3\)

\(\Leftrightarrow\begin{cases}x-3< 0\\x^2-3x+2\ge0\end{cases}\) hoặc \(\begin{cases}x-3\ge0\\x^2-3x+2\ge\left(x-3\right)^2\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\2\le x< 3\\x\ge3\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\x\ge2\end{array}\right.\)

Vậy tập xác định là : D=(\(-\infty;1\)]\(\cup\) [2;\(+\infty\) )

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

14 tháng 5 2016

a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)

 

b. \(y=\log_3\left(x^2-3x\right)\)

Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)

                                   \(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)

 

c. \(y=\log_{x^2-4x+4}2013\)

Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)

Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)

14 tháng 5 2016

Điều kiện :  

                 \(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)

           \(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)

           \(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)

\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)

Vậy tập xác định là D = [-2;-1) U (2;7]