K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Điều kiện xác định :

\(\begin{cases}x\ne\pm1\\\frac{1}{1-x}+\frac{1}{1+x}>0\\\log_2\left(\frac{1}{1-x}+\frac{1}{1+x}\right)\ge0\end{cases}\)  \(\Leftrightarrow\begin{cases}x\ne\pm1\\\frac{2x}{1-x^2}>0\\\frac{2x}{1-x^2}\ge1\end{cases}\)  \(\Leftrightarrow\begin{cases}x\ne\pm1\\\frac{x^2+2x-1}{1-x^2}\ge0\end{cases}\)

Xét dấu đa thức \(P\left(x\right)=\frac{x^2+2x-1}{1-x^2}\) ta có :

x P(x) - 8 -1- căn 2 -1 -1 + căn 2 1 + 8 - + - + - 0 0

Vậy tập xác định của hàm số là : \(D=\)\(-1-\sqrt{2;-1}\) ) \(\cup\) (\(-1+\sqrt{2},1\) ]

14 tháng 5 2016

Điều kiện :  

                 \(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)

           \(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)

           \(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)

\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)

Vậy tập xác định là D = [-2;-1) U (2;7]

                          

14 tháng 5 2016

\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)

Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)

             \(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\)  \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)

              \(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)

              \(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số

14 tháng 5 2016

a. \(y=\left(3^x-9\right)^{-2}\)

Điều kiện : \(3^x-9\ne0\Leftrightarrow3^x\ne3^2\)

                                  \(\Leftrightarrow x\ne2\)

Vậy tập xác định là \(D=R\backslash\left\{2\right\}\)

 

b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)

Điều kiện : \(\log_{\frac{1}{3}}\left(x-3\right)-1\ge0\Leftrightarrow\log_{\frac{1}{3}}\left(x-3\right)\ge1=\log_{\frac{1}{3}}\frac{1}{3}\)

                                               \(\Leftrightarrow0< x-3\le\frac{1}{3}\)

                                               \(\Leftrightarrow3< x\le\frac{10}{3}\)

Vậy tập xác định \(D=\) (3;\(\frac{10}{3}\)]

 

c. \(y=\sqrt{\log_3\sqrt{x^2-3x+2}+4-x}\)

Điều kiện :

                 \(\log_3\sqrt{x^2-3x+2}+4-x\ge0\Leftrightarrow x^2-3x+2+4-x\ge1\)

                                                                 \(\Leftrightarrow\sqrt{x^2-3x+2}\ge-x-3\)

\(\Leftrightarrow\begin{cases}x-3< 0\\x^2-3x+2\ge0\end{cases}\) hoặc \(\begin{cases}x-3\ge0\\x^2-3x+2\ge\left(x-3\right)^2\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\2\le x< 3\\x\ge3\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\x\ge2\end{array}\right.\)

Vậy tập xác định là : D=(\(-\infty;1\)]\(\cup\) [2;\(+\infty\) )

14 tháng 5 2016

a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)

Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)

Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)

 

b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)

Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)

                                      \(\Leftrightarrow-3< x< x\)

Vậy tập xác định là \(D=\left(-3;2\right)\)

17 tháng 12 2017

Cách giải

26 tháng 3 2016

a) Hàm số \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\) xác định khi và chỉ khi \(x^8-8>0\)

                  \(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy tập xác định của hàm số là \(\left(2;+\infty\right)\)

Đạo hàm của hàm số là :

\(y'=\frac{\pi}{3}\left(x^3-8\right)'.\left(x^3-8\right)^{\frac{\pi}{3}-1}=\frac{\pi}{3}.3x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}=x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}\)

b) Hàm số xác định khi và chỉ khi \(x^2+x-6>0\Leftrightarrow x<-3\) hoặc \(x\ge2\)

Vậy tập xác định của hàm số là : \(\left(-\infty;-3\right)\cup\left(2;+\infty\right)\)

Đạo hàm của hàm số là :

\(y'=\frac{-1}{3}\left(x^2+x-6\right)'.\left(x^2+x-6\right)^{\frac{-1}{3}-1}=\frac{-\left(2x+1\right)\left(x^2+x-6\right)^{\frac{-4}{3}}}{3}\)

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

6 tháng 5 2016

Hàm số xác định với mọi \(x\in R\Leftrightarrow\begin{cases}\frac{x^2-mx+1}{x^2-x+1}>\frac{2}{3}\\\frac{x^2-mx+1}{x^2-x+1}\le\frac{2}{3}\end{cases}\) với mọi \(x\in R\)

\(\Leftrightarrow\begin{cases}x^2-\left(3m-2\right)x+1>0\\x^2+\left(2m-3\right)x+1\ge0\end{cases}\)

\(\Leftrightarrow\begin{cases}\Delta_1=9m^2-12m< 0\\\Delta_2=4m^2-12m+5\le0\end{cases}\)

\(\Leftrightarrow\begin{cases}0< m< \frac{4}{3}\\\frac{1}{2}\le m\le\frac{5}{2}\end{cases}\)

\(\Leftrightarrow\frac{1}{2}\le m< \frac{4}{3}\)

Vậy \(\frac{1}{2}\le m< \frac{4}{3}\) thì hàm số đã cho xác định với mọi \(x\in R\)

Điều kiện \(\begin{cases}\sqrt{x^2+1}-2>0\\3x-2\ge0\\x^2-1>0\end{cases}\) \(\Leftrightarrow x\ge\sqrt{3}\)

Vậy tập xác định là : \(D=\)[\(\sqrt{3;}+\infty\) )

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker