K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: ĐKXĐ: \(\cos^2x>=1\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos x>=1\\\cos x< =-1\end{matrix}\right.\Leftrightarrow x\in\left\{k2\Pi;\Pi+k2\Pi\right\}\)

2: ĐKXĐ: \(1-\sin2x>0\)

\(\Leftrightarrow\sin2x< 1\)

\(\Leftrightarrow2x< \dfrac{\Pi}{2}+k\Pi\)

hay \(x< \dfrac{\Pi}{4}+\dfrac{k\Pi}{2}\)

28 tháng 8 2019

a)
\(1-cos^2x\ge0\)

\(cos^2x\le1\)

\(\frac{1+cos2x}{2}\)\(\le1\)

1 + cos2x \(\le\)2

cos2x \(\le1\)

2x \(\le\)k2π

x ≤ kπ

b)

cos (x-π) ≠ 0

x-π ≠ \(\frac{\pi}{2}\) +kπ

x ≠ \(\frac{3\pi}{2}\) +kπ

c) \(\left\{{}\begin{matrix}cosx\ne0\\tanx-1\ne0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\tanx\ne tan\frac{\pi}{4}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\text{​​}\ne\frac{\pi}{2}+k\pi\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

1: ĐKXĐ: 3-cosx>0

=>cosx<3(luôn đúng)

2: ĐKXĐ: 1-sin 3x>=0

=>sin 3x<=1(luôn đúng)

3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi

=>x<>kpi và x<>pi/4+kpi/2

4: ĐKXĐ: 2x-1>=0

=>x>=1/2

20 tháng 6 2017

m.n giúp tui vs haha

NV
27 tháng 9 2020

3.

\(4sinx.cosx-2sinx+1-2cosx=0\)

\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

4.

\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)

Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
27 tháng 9 2020

5.

\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

6.

\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)

\(\Leftrightarrow14sin^2x-5sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)