K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2014

mình đánh lộn số 68

nha bạn

cho minh dung nha

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng

$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên 

$n=60k+2$

$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$

$\Leftrightarrow 60k-1\vdots 7$

$\Leftrightarrow 63k-(60k-1)\vdots 7$

$\Leftrightarrow 3k+1\vdots 7$

$\Leftrightarrow 3k-6\vdots 7$

$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.

Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$

Vì $t\geq 0$ nên $n\geq 122$

Vậy số tự nhiên nhỏ nhất thỏa đề là $122$

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

27 tháng 3 2018

Gọi số tự nhiên đó là a 

ta có : a-2 chia hết cho 3;4;5;6

           a-2 thuộc BC (3;4;5;6)

            BC(3;4;5;6) = (60;120;...)

            a = (62;122;...)

  => a nhỏ nhất mà chia cho 7 dư 3 nên a =122

17 tháng 3 2018

gọi STN đó là a. Ta có:

a-2 chia hết cho 3;4;5;6

a-2 thuộc BC(3,4,5,6)

BCNN(3,4,5,6)=60

a={62;122;...}

vì a nhỏ nhất , a chia 7 dư 3 nên a=122

27 tháng 3 2018

Gọi số tự nhiên đấy là b .

Ta có : a-2 sẽ chia hết cho 3,4,5,6 

nên ta tìm bội chung của chúng ok

      rồi nói với cô giáo cô làm nốt họ em