Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1; 2; ………; n có n số hạng
Suy ra 1 +2 +…+ n
Mà theo bài ra ta có 1 +2 +3+…..+n =
Suy ra = a . 111 = a . 3.37
Suy ra: n(n + 1) = 2.3.37.a
Vì tích n(n + 1) chia hết cho số nguyên tố 37 nên n hoặc n + 1 chia hết cho 37
Vì số có 3 chữ số suy ra n+1 < 74 n = 37 hoặc n + 1 = 37
+) Với n = 37 thì (không thỏa mãn )
+) Với n + 1 = 37 thì ( thoả mãn)
Vậy n =36 và a = 6. Ta có: 1+2+3+…..+ 36 = 666
1 + 2 + 3 + ... + n = aaa
n x ( n + 1 ) : 2 = a x 111
n x ( n + 1 ) : 2 = a x 3 x 37
n x ( n + 1 ) = a x 3 x 37 x 2
n x ( n + 1 ) = a x 6 x 37
Mà tích của n x ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên a x 6 x 37 là tích của hai số tự nhiên liên tiếp .
Để a x 6 x 37 là tích của hai số tự nhiên liên tiếp thì a = 6 để a x 6 x 37 = 6 x 6 x 37 = 36 x 37
=> aaa = 666
Vậy n x ( n + 1 ) = 666 x 2 = 1332
Vì 36 x 37 = 1332 nên n = 36
đáp số : a = 6 ; n = 36
Nhớ k cho mình nha !!!
Chúc mừng năm mới :))
Goi S co n so hang sao cho S = 1+2+3+...+n=aaa ( a la chu so )
⇒ ( n+1).n:2 = a.111
⇒ n(n+1) = a.222
⇒ n(n+1) = a.2.3.37
a la chu so ma n; n+1 la hai so tu nhien lien tiep nen a=6
⇒ n=36
1 + 2 + 3 + .... + n = aaa
=> n(n + 1) : 2 = a . 111
=> n(n + 1) = 222.a
Vì \(0< a\le9\)
Nếu a = 1 => n(n + 1) = 222 => n \(\in\varnothing\)
Nếu a = 2 => n(n + 1) = 444 => n \(\in\varnothing\)
Nếu a = 3 => n(n + 1) = 666 => n \(\in\varnothing\)
Nếu a = 4 => n(n + 1) = 888 => n \(\in\varnothing\)
Nếu a = 5 => n(n + 1) = 1110 => n \(\in\varnothing\)
Nếu a = 6 => n(n + 1) = 1332 => n(n + 1) = 36.37 => n = 36 (tm)
Nếu a = 7 => n(n + 1) = 1554 => n \(\in\varnothing\)
Nếu a = 8 => n(n + 1) = 1776 => n \(\in\varnothing\)
Nếu a = 9 => n(n + 1) = 1998 => n \(\in\varnothing\)
Vậy n = 36 ; a = 6
We have \(1+2+3+...+n=\overline{aaa}\)
\(\Rightarrow\frac{n\left(n+1\right)}{2}=\overline{aaa}\)
\(\Rightarrow n\left(n+1\right)=2.3.37a\)
\(\Rightarrow n\left(n+1\right)⋮37\)
But 37 is a number element so \(\orbr{\begin{cases}n⋮37\\n+1⋮37\end{cases}}\)
again yes \(n< 74\)\(\Rightarrow\orbr{\begin{cases}n=37\\n+1=37\end{cases}}\)
+) If n = 37
\(\Rightarrow a=6\)
+) If n + 1 = 37 so n = 36
instead we see no integer value satisfying
So n = 36 and a = 6
Đặt
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=\(\dfrac{n\left(n+1\right)}{2}\)
=> aaa = \(\dfrac{n\left(n+1\right)}{2}\)
=> 2aaa =n(n+1)
Mặt khác aaa =a . 111= a . 3 . 37
=> n(n+1) =6a . 37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a . 6 =36
=> a=6
(nêu a . 6 =38 loại)
Vậy n=36, aaa=666
Bài 2 sau khi đã sửa đề thành $5x=7z$:
Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)
\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)
Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$
$\Rightarrow x=21k; y=14k; z=15k$
Khi đó:
$x-2y+z=32$
$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$
$\Rightarrow x=21k=84; y=14k=56; z=15k=60$
Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.
Bài 3:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)
\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)
\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)