K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Từ  1; 2; ………; n  có n số hạng

Suy ra 1 +2 +…+ n

Mà theo bài ra ta có 1 +2 +3+…..+n  = 

Suy ra = a . 111 = a . 3.37

Suy ra: n(n + 1) = 2.3.37.a

Vì tích  n(n + 1) chia hết cho số nguyên tố 37 nên n hoặc n + 1 chia hết cho 37

Vì số  có 3 chữ số suy ra n+1 < 74  n = 37 hoặc n + 1 = 37

+) Với n = 37 thì   (không thỏa mãn )

+) Với n + 1 = 37 thì         ( thoả mãn)

Vậy n =36 và a = 6. Ta có: 1+2+3+…..+ 36 = 666

9 tháng 8 2016

Đặt:

S= 1 + 2 + 3 + 4 + ... + n 

S= n+(n-1) + ... +2+1

2S= n(n-1)

S= n(n-1)/2

=> aaa= n(n-1)/2

=> 2aaa= n(n-1)

Mặt khác aaa= 2.111 = a.3.37

=> n(n-1) = 6a.37

Vế trái là tích của 2 stn lên tiếp

=> a.6=36 => a=36

Vậy n=36 , aaa=666

25 tháng 1 2017

1 + 2 + 3 + ... + n = aaa

n x ( n + 1 ) : 2 = a x 111 

n x ( n + 1 ) : 2 = a x 3 x 37 

n x ( n + 1 ) = a x 3 x 37 x 2 

n x ( n + 1 ) = a x 6 x 37

Mà tích của n x ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên a x 6 x 37 là tích của hai số tự nhiên liên tiếp .

Để a x 6 x 37 là tích của hai số tự nhiên liên tiếp thì a = 6 để a x 6 x 37 = 6 x 6 x 37 = 36 x 37

=> aaa = 666 

Vậy n x ( n + 1 ) = 666 x 2 = 1332

Vì 36 x 37 = 1332 nên n = 36

đáp số : a = 6 ; n = 36

Nhớ k cho mình nha !!!

Chúc mừng năm mới :))

12 tháng 9 2021

Goi S co n so hang sao cho S = 1+2+3+...+n=aaa ( a la chu so )

⇒ ( n+1).n:2 = a.111

⇒ n(n+1) = a.222

⇒ n(n+1) = a.2.3.37

a la chu so ma n; n+1 la hai so tu nhien lien tiep nen a=6

⇒ n=36

12 tháng 9 2021

S=1 +2+..+n 
S=n+(n-1)+..+2+1 
=> 2S = n(n+1) 
=> S=n(n+1)/2 
=> aaa =n(n+1)/2 
=> 2aaa =n(n+1) 

Mặt khác aaa =a*111= a*3*37 

=>n(n+1)=6a*37.Vế trái là tích hai số tự nhiên liên tiếp

a*6=36

a=36:6=6(nêu a 38 loại)

Vậy n=36,aaa=666

14 tháng 4 2018

n = 36 và aaa =666

đó bạn

19 tháng 12 2019

1 + 2 + 3 + .... + n = aaa 

=> n(n + 1) : 2 = a . 111

=> n(n + 1) = 222.a 

Vì \(0< a\le9\)

Nếu a = 1 => n(n + 1) = 222 => n \(\in\varnothing\)

Nếu a = 2 => n(n + 1) = 444 => n \(\in\varnothing\)

Nếu a = 3 => n(n + 1) = 666 => n \(\in\varnothing\)

Nếu a = 4 => n(n + 1) = 888 => n \(\in\varnothing\)

Nếu a = 5 => n(n + 1) = 1110 => n \(\in\varnothing\)

Nếu a = 6 => n(n + 1) = 1332 => n(n + 1) = 36.37 => n = 36 (tm)

Nếu a = 7 => n(n + 1) = 1554 => n \(\in\varnothing\)

Nếu a = 8 => n(n + 1) = 1776 => n \(\in\varnothing\)

Nếu a = 9 => n(n + 1) = 1998 => n \(\in\varnothing\)

Vậy n = 36 ; a = 6

13 tháng 2 2020

We have \(1+2+3+...+n=\overline{aaa}\)

\(\Rightarrow\frac{n\left(n+1\right)}{2}=\overline{aaa}\)

\(\Rightarrow n\left(n+1\right)=2.3.37a\)

\(\Rightarrow n\left(n+1\right)⋮37\)

But 37 is a number element so \(\orbr{\begin{cases}n⋮37\\n+1⋮37\end{cases}}\)

again yes \(n< 74\)\(\Rightarrow\orbr{\begin{cases}n=37\\n+1=37\end{cases}}\)

+) If n = 37 

\(\Rightarrow a=6\)

+) If n + 1 = 37 so n = 36

instead we see no integer value satisfying

So n = 36 and a = 6

31 tháng 5 2021

Đặt 

S=1 +2+..+n 
S=n+(n-1)+..+2+1 
=> 2S = n(n+1) 
=> S=\(\dfrac{n\left(n+1\right)}{2}\)
=> aaa = \(\dfrac{n\left(n+1\right)}{2}\)
=> 2aaa =n(n+1) 

Mặt khác aaa =a . 111= a . 3 . 37 

=> n(n+1) =6a . 37 
Vế trái là tích 2 số tự nhiên liên tiếp 
=> a . 6 =36 
=> a=6 
(nêu a . 6 =38 loại) 

Vậy n=36, aaa=666

AH
Akai Haruma
Giáo viên
20 tháng 5 2020

Bài 2 sau khi đã sửa đề thành $5x=7z$:

Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)

\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)

Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$

$\Rightarrow x=21k; y=14k; z=15k$

Khi đó:

$x-2y+z=32$

$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$

$\Rightarrow x=21k=84; y=14k=56; z=15k=60$

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.

Bài 3:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)

\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)