K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.

Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)

Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).

Ta sẽ tìm 2 số chính phương như thế.

-----

Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)

Ta có bảng: 

\(m+n\)\(27\)\(9\)
\(m-n\)\(1\)\(3\)
\(m^2\)\(196\)\(36\)
\(n^2\)\(169\)\(9\)

------

Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).

Đến đây bạn tự giải tiếp nha bạn.

Đáp số: \(2;-3\)

19 tháng 1 2017

chịu rồi 

tk nhé 

thanks 

2222

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

27 tháng 9 2018

\(n^4+2n^3+2n^2+n+7=k^2\)

\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)

\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)

\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)

\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)

Làm nôt

1 tháng 10 2016

Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)

\(\Rightarrow\left(4n^2+1\right)^2+24=4m^2\Leftrightarrow4m^2-\left(4n^2+1\right)^2=24\)

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=24\)

Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ , nên ta có thể viết 

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.24=2.12=6.4=3.8\)

Suy ra n có thể có giá trị sau:2:

1 tháng 10 2016

Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)

\(\Rightarrow\left(2n\right)^2+2.2.n+1+23=4m^2\Leftrightarrow\left(4n^2+1\right)^2+23=4m^2\)

\(4m^2-\left(4n^2+1\right)^2=23\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=23\)

Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ nên ta có thể viết 

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.23\)

Suy ra n có thể có giá trị là 5

NV
30 tháng 1 2022

\(n^2+3n=k^2\)

\(\Leftrightarrow4n^2+12n=4k^2\)

\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)

Phương trình ước số cơ bản