Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4n+1}{2n-1}=\frac{4n-2+3}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}\)
\(=2+\frac{3}{2n-1}\). Vì \(2\in Z\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)
\(\Rightarrow2n-1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Rightarrow n\in\left\{-1;0;1;2\right\}\)
b)\(\frac{2n+5}{n+2}=\frac{2n+4+1}{n+2}=\frac{2.\left(n+2\right)+1}{n+2}\)
\(=\frac{2.\left(n+2\right)}{n+2}+\frac{1}{n+2}=2+\frac{1}{n+2}\). Vì \(2\in Z\Rightarrow n+2\inƯ\left(1\right)\)
\(\Rightarrow n+2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;-1\right\}\)
c) \(\frac{2n-3}{n-2}=\frac{2n-4+1}{n-2}=\frac{2.\left(n-2\right)+1}{n-2}\)
\(=\frac{2.\left(n-2\right)}{n-2}+\frac{1}{n-2}=2+\frac{1}{n-2}\)
Vì \(2\in Z\Rightarrow\frac{1}{n-2}\in Z\Rightarrow n-2\inƯ\left(1\right)\)
\(\Rightarrow n-2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{1;3\right\}\)
1 . goi UCLN ( 2n + 1,6n + 5 ) la d
=> 2n + 1 chia hết cho d (1)
6n + 5 chia hết cho d (2)
từ (1)=> 6 x ( 2n + 1 ) = 12n + 6 chia hết cho d (3)
từ (2) => 2 x ( 6n + 5 ) = 12n + 10 chia hết cho d (4)
Tu (3) va (4) => ( 12n + 10 ) - (12n + 6 ) chia het cho d
hay 4 chia hết cho d=> d thuộc { 1,2,4}
Mà d là lớn nhất => d = 4
2). 2x + 11 chia hết cho x + 3
(2x + 6 ) + 5 chia het cho x + 3
2 x ( x + 3 ) + 5 chia hết cho x + 3 (1)
Ma 2 x ( x + 3 ) chia het cho x + 3 (2)
Từ (1) và (2) => 5 chia hết cho x + 3
=> X + 3 thước U của 5 hay x + 3 thuộc { 1,5}
x thuộc { -2,2}
Mà x thuộc N => x = 2
Từ n+4 chia hết cho n+1
Ta có : n+4=(n+1) + 3
Thì ta có n + 1 +3 sẽ chia hết cho n+1
Suy ra 3 chia hết cho n+1
n+1 sẽ thuộc ước của 3
Ư(3) = ((1;3))
Suy ra n+1=1 hoặc n+1=3
+) n+1=1
n = 1-1
n = 0
+) n+1= 3
n = 3-1
n = 2
Suy ra n có thể bằng 0 hoặc 2
ta có :
\(n+8=n-3+11\text{ chia hết cho n-3 khi 11 chia hết cho n-3}\)
hya n-3 là ước của 11
hay \(\orbr{\begin{cases}n-3=1\\n-3=11\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=4\\n=14\end{cases}}\)
B=\(3^1+3^2+3^3+...+3^{300}\)
=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{299}+3^{300}\right)\)
=\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{299}\left(1+3\right)\)
=\(3.4+3^3.4+...+3^{299}.4\)
=\(\left(3+3^3+...+3^{299}\right).4\)
Vì 4\(⋮\)2 mà trong một tích có 1 ts chia hết cho 2 thì tích đó chia hết cho 2 \(\Rightarrow\)B\(⋮\)2
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)