Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Nhân cả hai vế của A với 3 ta được :
3A = 3 ( 3 + 32 + 33 + ..... + 32015 + 32016 )
= 32 + 33 + 34 + ..... + 32016 + 32017 ( 1 )
Trừ cả hai vế của ( 1 ) cho A ta được :
3A - A = ( 32 + 33 + 34 + ..... + 32016 + 32017 ) - ( 3 + 32 + 33 + ..... + 32015 + 32016 )
2A = 32 + 33 + 34 + ..... + 32016 + 32017 - 3 - 32 - 33 - .....- 32015 - 32016
2A = 32017 - 3 => A = \(\frac{3\left(3^{2016}-1\right)}{2}\)
b ) Ta có : 32016 = ( 32 )1008 = 91008
Vì 92n có chữ số tận cùng là 1 => 91008 có chữ số tận cùng là 1
=> 32016 có chữ số tận cùng là 1
=> 32016 - 1 có chữ số tận cùng là 0
=> 3 ( 32016 - 1 ) có chữ số tận cùng là 0
=> \(\frac{3\left(3^{2016}-1\right)}{2}\) có chữ số tân cùng là 5
c ) chịu
Mình không chắc câu c) ,do dạng này mới học.
a) \(3A=3^2+3^3+3^4+...+3^{2017}\)
\(3A-A=2A=3^{2017}-3\Rightarrow A=\frac{3^{2017}-3}{2}\)
b)Ta có: \(3^{2017}=3^{4.504+1}=3^{4k+1}=\left(...3\right)\)
Nên A tận cùng là: \(\frac{\left(...3\right)-3}{2}=\frac{\left(..0\right)}{2}=..0\)
c) \(A=\frac{3^{2017}-3}{2}=\frac{3}{2}\left(3^{2016}-1\right)\)
Nên A là số chính phương thì \(3^{2016}-1=\frac{3}{2}k^2\)
Khi đó \(A=\frac{9}{4}k^2\Rightarrow k^2=\frac{3^{2017}-3}{2}:\frac{9}{4}=\frac{4\left(3^{2017}-3\right)}{18}\)
Do 18 không phải là số chính phương nên A không phải là số chính phương (do quy tắc \(\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}\)khi đó để A là số chính phương thì cả tử và mẫu đề là số chính phương,ta chỉ cần xét 1 trong 2.)
a) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
⇒3A=3(3+32+33+...+32015+32016)⇒3A=3(3+32+33+...+32015+32016)
⇒3A=32+33+34+...+32016+32017⇒3A=32+33+34+...+32016+32017
⇒3A−A=(32+33+...+32017)−(3+32+...+32016)⇒3A−A=(32+33+...+32017)−(3+32+...+32016)
⇒2A=32017−3⇒A=32017−32⇒2A=32017−3⇒A=32017−32
Vậy A=32017−32A=32017−32
b) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
=(3+32+33+34)+...+(32013+32014+32015+32016)=(3+32+33+34)+...+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40=40(3+...+32013)=3.40+...+32013.40=40(3+...+32013)
Vậy A có chữ số tận cùng là 0
c) Dễ thấy:
AA chia hết cho 33
AA không chia hết cho 3232
Mà 33 là số nguyên tố
Nên A không là số chính phương
Ta có: A = \(3+3^2+3^3+...+3^{2015}+3^{2016}\)
a) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-3\)
\(2A=3^{2017}-3\)
Suy ra \(A=\frac{3^{2017}-3}{2}\)
b) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-1\)
\(2A=3^{2017}-1\)
Sau đó bạn tự giải tiếp phần b)
c) Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}⋮3\Rightarrow A⋮3\)
Mà \(3⋮̸3^2\). Suy ra A không chia hết cho 32
Ta lại có: A chia hết cho 3 nhưng không chia hết cho 32
Vì thế A không phải là số chính phương
tính 3A
XONG LẤY 3A-A
LÀ RA
LM ĐC MÀ MIK K CÓ THỜI GIAN NÊN CHỈ GIÚP BN ĐC THẾ
Giả sự b đúng thì => a có chữ số tận cùng là 1
=> a + 51 = 52 ko phải số chính phương
a - 38 = ( ...3) ko phải số chính phương
=> a,c Sai ; b đúng 2 sia và ( Trái với đề bài )
Vậy b sai
Từ đó lập luận và tìm a
Chúc bạn học tốt
Giả sự b đúng thì => a có chữ số tận cùng là 1
=> a + 51 = 52 ko phải số chính phương
a - 38 = ( ...3) ko phải số chính phương
=> a,c Sai ; b đúng 2 sia và ( Trái với đề bài )
Vậy b sai