K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Violympic toán 7

15 tháng 1 2020

Thế tại sao \(\left(x-2015\right)^2=1\)

\(\left(x-2015\right)^2=0\) mà lại không = các số khác vậy

16 tháng 3 2018

Nếu muốn trất thì: \(8\left(x-2015\right)^2;y^2\ge0\)\(8\left(x-2015\right)^2⋮8\)

\(\Rightarrow\left\{{}\begin{matrix}8\left(x-2015\right)^2⋮8\\8\left(x-2015\right)^2\in N\le25\end{matrix}\right.\)

Y thì kệ nó tìm x rồi xử nó sau

14 tháng 2 2017

x = 2015 , y = 5 nhé bn!

mik tính nhẩm thui!vui

20 tháng 10 2018

a) 

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

29 tháng 11 2018

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\Rightarrow x+1\in\left\{-1;1\right\}\Rightarrow x\in\left\{-2;0\right\}\)

\(+,x=0;\Rightarrow\frac{x}{x+1}=0\left(tm\right);+,x=-2\Rightarrow\frac{x}{x+1}=\frac{-2}{-1}=2\left(tm\right)\)

Vậy: x E {0;2}

b,  \(\frac{a}{2010}=\frac{b}{2012}=\frac{c}{2014}\Rightarrow a=2010k;b=2012k;c=2014k\left(k\in Z\right)\)

\(\frac{\left(a-c\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\)và: \(\left(a-b\right)\left(b-c\right)=\left(-2k\right)\left(-2k\right)=4k^2\)

\(\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)\(\left(ĐPCM\right)\)

c, Ta có:

\(25-y^2=8.x^2\Rightarrow25-y^2⋮8\Rightarrow y^2:8\left(dư1\right)\left(y\le5\right)\Rightarrow y\in\left\{1;3;5\right\}\)

Ta lần lượt thử ta thấy:

\(25-y^2=8.x^2\left(tm\right)\Leftrightarrow y=5\Rightarrow x=0\)

Vậy: y=5;x=0

29 tháng 11 2018

Ko thanks mk à