Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\sqrt{x^2+x+3}\) nguyên thì
\(\Rightarrow x^2+x+3=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4x^2+4x+12=4a^2\)
\(\Leftrightarrow4a^2-\left(2x+1\right)^2=11\)
\(\Leftrightarrow\left(2a+2x+1\right)\left(2a-2x-1\right)=11\)
\(\Leftrightarrow\left(2a+2x+1,2a-2x-1\right)=\left(1,11;11,1;-1,-11;-11,-1\right)\)
\(\Leftrightarrow\left(a,x\right)=\left(3,-3;3,2;-3,-3;-3,2\right)\)
Vậy ....
a)\(pt\Leftrightarrow\sqrt{x^2-2x+2}+\sqrt{3x^2-6x+4}-2=0\)
\(\Leftrightarrow\sqrt{x^2-2x+2}-1+\sqrt{3x^2-6x+4}-1=0\)
\(\Leftrightarrow\frac{x^2-2x+2-1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+3}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{x^2-2x+2}+1}+\frac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}>0\) (loại)
Nên x-1=0 suy ra x=1
b)\(pt\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}+x^2+2x-5=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+21}-4+x^2+2x+1=0\)
\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+21-16}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)
Dễ thấY: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1>0\) (loại luôn)
Nên x+1=0 suy ra x=-1
B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)- \(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)( \(x\ge0\); \(x\ne2;3\))
= \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)= \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)= \(1+\frac{4}{\sqrt{x}-3}\)
để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)
ta có bảng sau
\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1 (L)
x 16 4 25 1 49
vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }
#mã mã#
\(\sqrt{x^2+x+3}=a\left(a\in Z\right).\)
\(\Rightarrow x^2+x+3=a^2\Leftrightarrow4x^2+4x+12=4a^2\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=-11\)
\(_{\Leftrightarrow\left(2x+1-2a\right)\left(2x+1+2a\right)=-11}\)
Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong
√x2+x+3=a(a∈Z).
⇒x2+x+3=a2⇔4x2+4x+12=4a2⇔(2x+1)2−(2a)2=−11
⇔(2x+1−2a)(2x+1+2a)=−11
Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong