K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

a) 2n + 1 + 12 -2n =13

6-n(ư)13 = -1; 1; -13 ; 13

n = 7; 19

b) tương tự, k làm dc mk sẽ làm tiếp

15 tháng 8 2018

a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)

\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)

b.Tách tương tự nha

15 tháng 8 2018

\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)

vậy với mọi x thuộc N đều t/m

b) tương tự nha

12 tháng 7 2016

                                  Ta có : 

                             \(2n+1=2n-12+12+1=2n-12+13=2.\left(6-n\right)+13\)

                           Để \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)thì \(2.\left(6-n\right)+13\)chia hết cho \(\left(6-n\right)\)mà \(2.\left(6-n\right)\)chia hết cho \(6-n\)nên \(13\)chia hết cho \(6-n\)\(\Rightarrow6-n\inƯ\left(13\right)\)

                           Mà \(Ư\left(13\right)=\left\{-13;-1;1;13\right\}\)

                            \(\Rightarrow6-n\in\left\{-13;-1;1;13\right\}\)

                         Vì \(n\in N\)nên ta có bảng sau : 

                     

6-n-13-1113
n1975-7
N/xétchọnchọnchọnloại

                      Vậy với \(n\in\left\{5;7;19\right\}\) thì \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)

                         Ủng hộ mk nha !!! ^_^

22 tháng 9 2016

\(A=\left(2n\right)^3+\left(3n^2\right)+n\)

\(A=n\left(2n^2+3n+1\right)\)

\(A=n\left[\left(n^2+2n+1\right)+\left(n^2+n\right)\right]\)

\(A=n\left[\left(n+1\right)^2+n\left(n+1\right)\right]\)

\(A=n\left(n+1\right)\left(2n+1\right)\)

Ta có : A luôn chia hết cho 2 vì n ( n + 1) chia hết cho 2
Khi n = 3k suy ra n chia hết cho 3 
Suy ra A chia hết cho 3
Khi n = 3k + 1 
Khi đó :2n + 1 = 6k + 2 + 1 = 6k + 3 = 3(2k + 1) chia hết cho 3 
Khi n = 3k + 2
Khi đó n + 1 = 3k + 3 = 3(k + 1) chia hết cho 3
Suy ra: A chia hết cho 2 và A chia hết cho 3
Vậy A chia hết cho 6

10 tháng 3 2017

a) Ta có

\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)

=> 7\(⋮\) 2n + 3

Do n \(\in\) Z nên 2n + 3 \(\in\) Z

=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2

Ta có bảng

n 2n + 3 So với điều kiện n\(\in\) Z
-1 1 Thỏa mãn
2 7 Thỏa mãn
-2 -1 Thỏa mãn
-5 -7 Thỏa mãn

Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

24 tháng 11 2019

a)4n2-3n-1 chia hết cho 4n-1

<=>4n2-n-2n-1 chia hết cho 4n-1

<=>n(4n-1)-(2n+1) chia hết cho 4n-1

<=>2n+1 chia hết cho 4n-1

<=>2(2n+1) chia hết cho 4n-1

<=>4n-1+3 chia hết cho 4n-1

<=>3 chia hết cho 4n-1

=>4n-1 thuộc Ư(3)

=>Ư(3)={-1;1;-3;3}

Ta có bảng sau:

4n-1-11-33
n01/2-1/21
KLtmloạiloạitm

Vậy n thuộc {0;1}

b)4n2-3n-1 chia hết cho n-1

<=>4n2-4n+n-1 chia hết cho n-1

<=>4n(n-1)+n-1 chia hết cho n-1

<=>(4n+1)(n-1) chia hết cho n-1

<=>n thuộc N với mọi gtrị

P/s: "chia hết cho" thì viết kí hiệu vô

Is that T :))