Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
1/Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi ố cần tìm là a.
Ta có : a=29p+5; a=31q+28
Khi đó ta có: 29p+5 = 31q+28 ﴾*﴿
=> 29﴾p‐q﴿ = 2q+23
=> 28﴾p‐q﴿ + ﴾p‐q﴿ ‐ 1 = 2q +22
Vế phải chia hết cho 2 nên [﴾p‐q﴿‐1] cung chia hết cho 2 mà a là số tự nhiên nhỏ nhất nên [﴾p‐q﴿‐1] = 0
=> p = q+1 thay vào ﴾*﴿ ta được
q = 3 => p = 4.
=> a = 31*3+28 = 121
hay a = 4*29 + 5 = 121
Số cần tìm là 121
gọi số đó là a ( a thuộc N*)
vì khi chia nó cho 29 dư 7, chia cho 31 dư 8
=>a-7 chia hết cho 29,a-8 chia hết cho 31
=>a-7+464 chia hết cho 7, a-8+465 chia hết cho 8
=>a+457 chia hết cho 7 và 8
=>a+457 thuộc BCNN của 7 và 8
=> bc(7,8):0;56;112;...;448;504;...
a+457=504
=>a=504-457=47