Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
1.
Gọi số cần tìm là a
theo bài ra ta có: a-7 chia hết 11
a-7 chia hết 13
a-7 chia hết 17 và a là số lớn nhất có 4 chữ số
=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số
BCNN (11,13,17)=2431
(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)
=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)
mà a là số lớn nhất có 4 chữ số
nên a=9731
Vậy số cần tìm là 9731
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
a : 5 dư 3
= > a - 3 chia hết cho 5
= > 2 (a - 3) chia hết cho 5
= > 2a - 6 + 5 chia hết cho 5
= > 2a - 1 chia hết cho 5, a chia 7 dư 4
= > a - 4 chia hết cho 7
= > 2(a - 4 ) chia hết cho 7
= > 2a - 8 + 7 chia hết cho 7
= > 2a -1 chia hết cho 7
a chia 11 dư 6
= > a - 6 chia hết cho 11
= > 2(a - 6) chia hết cho 11
= > 2a - 12 + 11 chia hết cho 11
= > 2a -1 chia hết cho 11
Vậy 2a - 1 thuộc BC(5;7;11)
Vì a nhỏ nhất nên 2a -1 nhỏ nhất
= > 2a - 1 = BC(5;7;11) = 5.7.11= 385
= > 2a - 1 =385
= > 2a = 386; a = 193
(mình nghĩ vậy)
a : 5 (dư 3) =>2a : 5 (dư 1) =>2a - 1 chia hết cho 5.
a : 7 (dư 4) =>2a : 7 (dư 1) =>2a - 1 chia hết cho 7.
a : 11 (dư 6) =>2a : 11 (dư 1) =>2a - 1 chia hết cho 11.
a nhỏ nhất => 2a nhỏ nhất => 2a - 1 nhó nhất.
=>2a - 1 thuộc BCNN(5,7,11) (1)
5 = 5
7 = 7
11 = 11
BCNN(5,7,11)= 5 . 7 . 11 = 385. (2)
Từ (1) và (2) => 2a - 1 = 385
2a = 385 + 1
2a = 386
a = 386 : 2
a = 193
Vậy,số tự nhiên a nhỏ nhất cần tìm là 193
Gọi số cần tìm là x
ta có x-1 chia hết cho 2,3,5 và x chia hết cho 7
mà BC( 2,3,5) = B ( 30)
vậy \(\hept{\begin{cases}x=30k+1\\x=7h\end{cases}\Leftrightarrow30k+1=7h\Leftrightarrow30\left(k-3\right)=7\left(h-13\right)}\)
vậy k-3 phải chia hết cho 7 hay \(k=7n+3\Rightarrow x=30\times\left(7n+3\right)+1=210\times n+91\)
mà x nhỏ hơn 200 nên x =91
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Gọi số cần tìm là a ( a thuộc N*)
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
số đó là 63 bạn nha
Số cần tìm là 91