K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

N=1 nha!@#$%&*

31 tháng 3 2020

Với n = 0 => A = 1n + 2n + 3n + 4n = 4( loại ) 

Với n = 1 => A=  1n + 2n + 3n + 4n = 10 \(⋮\)5 ( t/m 

Với n \(\ge\)

+) Nếu n là số chẵn => n = 2k ( k \(\in\)N) 

=> A = 1 + 4k + 9k + 16k 

Ta thấy : 4 chia 5 dư ( - 1 ) => 4k chia 5 dư ( -1 )k 

              : 9 chia 5 dư ( - 1 ) => 9k chia 5 dư ( - 1 )k 

               : 16 chia 5 dư 1 => 16k chia 5 dư 1

=> A chia 5 dư 1 + ( - 1 )k + ( - 1 )k + 1 

Nếu k chẵn => A chia 5 dư 4 ( loại ) 

Nếu k lẻ => k = 2m + 1 ( m \(\in\)N ) 

=> A = 1 + 42m . 4 + 92m . 9 + 162m . 16 

        =  1 + 16m . 4 + 81m . 9 + 256m .16 

Vì 16 ; 81 ; 256 chia 5 dư 1 => A chia 5   có số dư bằng ( 1 + 4 + 9 +16 ) cho 5 => A \(⋮\) 5 

=> n = 2. ( 2m + 1 ) = 4m + 2 thì A  \(⋮\)5

Nếu n lẻ => n = 2h + 1 ( h \(\in\)N

=> A = 1 + 4h  . 2 + 9h . 3 + 16h . 4 

=> A chia 5 dư 1 +( -1)h .2 + (-1)h . 3 + 4 

Khi h lẻ để A \(⋮\)5 => n = 2. ( 2.i + 1 ) + 1 = 4.i + 3 ( i \(\in\)N ) 

18 tháng 7 2016

a) (5.20)^4/(25.4)^5

=100^4/100^5

=1/100

18 tháng 7 2016

câu a bài 2

32 :2^n=2

2^n=16

2^n=2^4

n=4

15 tháng 7 2016

2^n/32 = 4 => 2^n = 4 . 32 = 128 => n =7

27^n . 9^n = 9^27 . 81 

=> (27.9)^n = 9^27 . 9^2

=> 243^n = 9^54

=> 243^n = 243^1458

vay n=1458

15 tháng 7 2016

1/9 . 3^4 . 3^n+1 = 9^4

=> 9 . 3^n+1 = 6561

=> 3^n+1 = 6561 /9

=> 3^n+1 = 729

=> n = 5

24 tháng 2 2016

mh chưa hk toán casio(mt cầm tay)

ta có:\(\frac{2020-n}{2015-n}=\frac{2015-n+5}{2015-n}=1+\frac{5}{2015-n}\)

để 5/(2015-n) là snt thì 2015-n>/0 và \(2015-n\in\left\{1;5\right\}\)

ta có: 2015-n=1 suy ra n=2014

         2015-n=5 suy ra n=2010

để A là snt thì n=2014;n=2010

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

25 tháng 6 2019

Với n lẻ thì: \(^{a^n}\)\(^{b^n}\) = ( a+ b)*(\(^{a^{n-1}}\)\(^{a^{n-2}}\) * \(^{b+a^{n-3}}\) * \(^{b^2}\)-........-\(^{a\cdot b^{n2}}\)\(^{b^{n-1}}\))

hay:\(^{a^n}\)\(^{b^n}\) chia hết cho  a+b

\(^{1^n}\)\(^{2^n}\)+\(^{3^n}\) + \(^{4^n}\)= ( \(^{1^n}\)\(^{4^n}\)) +(\(^{2^n}\)\(^{3^n}\))

 Vậy với n lẻ \(^{1^n}\)\(^{4^n}\) và  \(^{2^n}\) + \(^{3^n}\) đều chia hết cho 5 nên N lẻ

13 tháng 11 2019

Trl 

Bn nhân chép là ra nhé :3

hok tốt

13 tháng 11 2019

\(\Rightarrow\left(x-\frac{1}{2}\right).\left(-5\right)=4.15\)

\(-5x+\frac{5}{2}=60\)

\(-5x=\frac{115}{2}\)

\(x=\frac{115}{2}.-\frac{1}{5}\)

\(x=-\frac{23}{2}\)

3 tháng 10 2016

quá dể k đi mình làm cho