K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Bài này sai đề. Chẳng hạn n =120 ; 240 ; 360 ;... ( vô số vô hạn ) thì đẳng thức thỏa mãn.

4 tháng 2 2017

Thử lại làm sao chia được cho 120

12 tháng 8 2016

Với n lẻ thì an+bn=(a+b)( an-1-an-2.b+an-3.b2-...-a.bn-2+bn-1) hay với n lẻ thì an+bn chia hết cho a+b

1n+2n+3n+4n=(1n+4n)+(2n+3n)

Áp dụng phần trên thì với n lẻ (1n+4n) chia hết cho 5 , 2n+3n chia hết cho 5

Kết luận : n lẻ

12 tháng 8 2016

Số tự nhiên N là 5 

7 tháng 11 2024

yamte aaaa

DD
8 tháng 12 2021

a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)

\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)

\(\Leftrightarrow2n^2-8n-86=0\)

\(\Leftrightarrow n^2-4n=43\)

Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)

\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).

Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).

Mà \(43\)chia cho \(3\)dư \(1\)

do đó phương trình đã cho không có nghiệm tự nhiên. 

b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)

\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).

mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)

suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố 

(do \(n^2+h^2+b^2+k^2>2\)).

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$2n^2-n+4\vdots 2n+1$

$\Rightarrow n(2n+1)-2n+4\vdots 2n+1$
$\Rightarrow n(2n+1)-(2n+1)+5\vdots 2n+1$

$\Rightarrow (2n+1)(n-1)+5\vdots 2n+1$

$\Rightarrow 5\vdots 2n+1$

$\Rightarrow 2n+1\in \left\{1;5\right\}$

$\Rightarrow n\in \left\{0; 2\right\}$

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0
17 tháng 5 2017

chỉ có 

n=2

trường hợp e sai 

18 tháng 5 2017

a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)

Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)

* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )

* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )

* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )

* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )

Vậy với n \(\in\)  { 0; 2; 6 } thì n + 4 \(⋮\)n - 1

Các bài còn lại bn làm tương tự như vậy