K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

 Với n = 1 thì \(n^2-n+2=2\) không là số chính phương.

Với n = 2 thì \(n^2-n+2=4\)là số chính phương

Với n > 2 thì \(n^2-n+2\)không là số chính phương vì :

\((n-1)^2< n^2-(n-2)< n^2\)

18 tháng 10 2018

hình như sai đề phải là 2^8 chứ

18 tháng 10 2018

đề là như thế đấy, bạn cứ gửi bài giải theo đề của bạn cho mk tham khảo cũng được

26+211+2n=64+2048+2n

=2112+2n là số chính phương

2112 chia hết cho 3=>2n chia 3 dư 1

=>n lẻ

đến đó thì tịt

8 tháng 10 2015

Ta có:

Giả sử 2n+28+211=a2<=>2n=a2-28-211=a2-2034=a2-482=(a+48)(a-48)

Như vậy 2n=(a+48)(a-48), giả sử n = p+q (p>q), khi đó:

2p+q=(a+48)(a-48)<=>2p.2q=(a+48)(a-48)=>2p=a+48, 2q=a-48=>2p-2q=96<=>2q(2p-q-1)=25.3 suy ra: 2q=25 và 2p-q-1=3=>q=5 và p=7. Khi đó n = p+q=12

19 tháng 1 2021

giả sử \(3^n+63=k^2\)

- Nếu n lẻ \(\Rightarrow3^n+63\equiv3+63\equiv2\left(mod4\right)\Rightarrow k^2\equiv2\left(mod4\right)\) (loại)

Đặt n=2m ( \(m\inℕ\)

- Nếu n chẵn \(\Rightarrow k^2-3^{2m}=63\Leftrightarrow\left(k-3^m\right)\left(k+3^m\right)=7.9\)

Vì \(k+3^m=k-3^m\left(mod3\right)\Rightarrow k+3^m,k-3^m\) đều chia hết cho 3

Lại có: \(k-3^m< k+3^m\Leftrightarrow\hept{\begin{cases}k-3^m=3\\k+3^m=3.7\end{cases}}\)

Từ đó tìm đc k=12, m=2 => n=4

DD
20 tháng 6 2021

\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.

Khi đó \(n^2+2n+18=m^2\)

\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)

Do \(m,n\)là số tự nhiên nên 

\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)

Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)

\(=81=9^2\)là số chính phương (thỏa mãn).

Vậy \(n=7\).