Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x^{n-2}y^7-8x^{n+2}y^8\right)⋮5x^3y^{n+1}\Leftrightarrow\hept{\begin{cases}n-2\ge3\\7\ge n+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=5\\n=6\end{cases}}\)
a) Để \((5x^3-7x^2+x)\) chia hết cho \(3x^n \)
=> \(5x^3;7x^2;x\) phải chia hết cho \(3x^n\)
mà n là số tự nhiên; \(x\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
b) Để \((13x^4y^3-5x^3y^3+6x^2y^2)\) chia hết cho \(5x^ny^n\)
=> \(13x^4y^3;5x^3y^3;6x^2y^2\) chia hết cho \(5x^ny^n\)
mà n là số nguyên; \(6x^2y^2\) là hạng tử có bậc nhỏ nhất
=>\(n=1\)
a)Để xn+2.yn+1 chia hết x5.y6 thì
\(\Leftrightarrow\hept{\begin{cases}n+2\ge5\\n+1\ge6\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge3\\n\ge5\end{cases}\Leftrightarrow}n\ge3}\)
Vậy n=0;1;2;3(vì n thuộc N)
a, 2x3 / xn+1
= 2/x3-n+1
= 2/x2-n
Để 2x3 chia hết cho xn+1 thì 2-n \(\ge\)0 <=> n \(\le\)2
b, ( 5x3 - 7x2 + x ) / 3xn
= 5/33-n - 7/32-n + 1/31-n
Để ( 5x3 - 7x2 + x ) chia hết cho 3xn thì 3 - n \(\ge\)0
2 - n \(\ge\)0
1 - n \(\ge\)0
<=> n \(\le\)3
n \(\le\) 2
n \(\le\) 1
<=> n \(\le\)1
Còn lại tương tự nha!
c, ( 13x4y3 - 5x3y3 + 6x2y2 ) / 5xnyn
d, ( 5x3 - 7x2 + x ) / 5xnyn
e, ( 13x4y3 - 5x3y3 + 6x2y2 ) / 5xnyn