Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a3 + b3 + c3 – 3abc
Ta sẽ thêm và bớt 3a2b +3ab2 sau đó nhóm để phân tích tiếp
a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)
= (a + b)3 +c3 – 3ab(a + b + c)
= (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]
= (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]
= (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
2) x5 – 1
Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm:
x5 – 1 = x5 – x + x – 1
= (x5 – x) + (x – 1)
= x(x4 – 1) + ( x – 1)
= x(x2 – 1)(x2 + 1) + (x - 1)
= x(x +1)(x – 1)(x2 + 1) + ( x – 1)
= (x – 1)[x(x + 1)(x2 + 1) + 1].
3) 4x4 + 81
Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:
4x4 + 81 = 4x4 + 36x2 + 81 – 36x2
= ( 2x2 + 9)2 – (6x)2
= (2x2 + 9 – 6x)(2x2 + 9 + 6x)
f/=>n thuộc ƯC(48,92,136) và n nhỏ nhất
48=24.3
92=22.23
136=23.17
=>UCLN(136;48;92)=22=4
=>n thuộc Ư(4)={-4;-2;-1;1;2;4}
=>n=-4
Có 350 : a dư 14
220 : a dư 10
\(\Rightarrow\hept{\begin{cases}350-14⋮a\\220-10⋮a\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}336⋮a\\210⋮a\end{cases}}\)
Do số tự nhiên a cần tìm là số lớn nhất.
\(\Rightarrow a\inƯCLN\left(336;210\right)\)
Có : \(336=2^4\text{×}3\text{×}7\)
\(210=2\text{×}3\text{×}5\text{×}7\)
\(\Rightarrow a=ƯCLN\left(336;210\right)=2\text{×}3\text{×}7=42\)
\(\Rightarrow a=42\)
Ta có : \(17a+13b+9c⋮7\Rightarrow\left(14a+3a\right)+\left(7b+6b\right)+9c⋮7\)
\(\Rightarrow\left(3a+6b+9c\right)+\left(14a+7b\right)⋮7\)
\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\)
Vì : \(3\in\) N* ; \(a+2b+3c⋮7\Rightarrow3\left(a+2b+3c\right)⋮7\)
Mà : \(7\left(2a+b\right)⋮7\)
\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\Rightarrow17a+13b+9c⋮7\)
Giải:
Để \(A=\frac{6}{x^2+3}\) đạt \(GTLN\Leftrightarrow x^2+3\) đạt \(GTNN\)
\(\Rightarrow x^2\ge0\Rightarrow x^2+3\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow x^2=0\Rightarrow x=0\)
Vậy \(A_{max}=\frac{6}{0+3}=2\) tại \(x=0\)
Câu 10: Giải:
\(A=\overline{155a710b4c16}⋮11\)
\(\Rightarrow\left(5+a+1+b+c+c\right)-\left(1+5+7+0+4+1\right)⋮11\)
\(\Rightarrow\left(12+a+b+c\right)-18⋮11\)
Vì \(a+b+c< 15\)
\(\Rightarrow\left(a+b+c+12\right)-18=0\)
\(\Rightarrow a+b+c=0+18-12=6\)
Vậy \(a+b+c=6\)
1) Áp dụng công thức: n(n - 1) : 2, ta được: 20 x 19 : 2 = 190 (đường thẳng)
2) Để phân số đã cho có giá trị bằng 0 thì (7 + x) = 0. Suy ra: x = -7
3) Theo bài ra ta có: (x + 3) . (6 + 2x) = 0
* Nếu: (x + 3) = 0. Suy ra: x = -3
* Nếu: (6 + 2x) = 0. Suy ra: x = -3
Vậy: Tập hợp các số nguyên x thỏa mãn điều kiện đề bài là: x = -3
4) Ta có:
Vì 2(n + 1) ⋮ (n + 1). Suy ra:
Để nhận giá trị nguyên thì 3 ⋮ (n + 1)
Suy ra: (n +1) ∈ Ư(3)
Ta có: Ư(3) = {-3, -1, 1, 3}
Suy ra: n = {-4; -2; 0; 2}
Vậy: Tập hợp các số tự nhiên thỏa mãn điều kiện đề bài là: n = {0; 2}
5) Có 4 cặp thỏa mãn đề bài là:
x =1; y = 35
x =5; y = 7
x =7; y = 5
x =35; y = 1
6) Theo bài ra ta có:
a + b – c = -3 (1)
a - b + c = 11 (2)
a - b - c = -1 (3)
Lấy (1) + (2), ta được: 2a = 8, suy ra: a = 4
Lấy (1) - (3), ta được: 2b = -2, suy ra: b = -1
Lấy (2) - (3), ta được: 2c = 12, suy ra: c = 6
Vậy: (a;b;c) = (4;-1;6)
7) Ta có:
n2 + n = 56
n(n + 1) = (-8).(-7)
Vậy: n = -8
8) Theo bài ra ta có:
30 + 29 + 28 + ... + 2 + 1 = (1 + 2 + 3 + 4 + 5) . x
(30 + 1) x 30 : 2 = 15 . x
x = 465 : 15
x = 31
9) Ta có:
ab - ac + bc - c2 = -1
a(b - c) + c(b - c) = -1
(a + c)(b - c) = -1
Vì a, b, c là các số nguyên khác 0, suy ra: a + c = 1; b - c = -1 hay a + c = -1; b - c = 1
Suy ra:
(a + c) = -(b - c)
a = -b
a/b = -1
10) Theo bài ra ta có:
(x2 + 4x + 7) ⋮ (x + 4)
[x(x + 4) + 7] ⋮ (x + 4)
Vì: x(x + 4) ⋮ (x + 4). Suy ra: 7 ⋮ (x + 4)
Suy ra: (x + 4) ∈ Ư(7)
Ta có: Ư(7) = {-7; -1; 1; 7}
Suy ra: x = {-11; -5; -3; 3}
1) Áp dụng công thức: n(n - 1) : 2, ta được: 20 x 19 : 2 = 190 (đường thẳng)
2) Để phân số đã cho có giá trị bằng 0 thì (7 + x) = 0. Suy ra: x = -7
3) Theo bài ra ta có: (x + 3) . (6 + 2x) = 0
* Nếu: (x + 3) = 0. Suy ra: x = -3
* Nếu: (6 + 2x) = 0. Suy ra: x = -3
Vậy: Tập hợp các số nguyên x thỏa mãn điều kiện đề bài là: x = -3
4) Ta có:
Vì 2(n + 1) ⋮ (n + 1). Suy ra:
Để nhận giá trị nguyên thì 3 ⋮ (n + 1)
Suy ra: (n +1) ∈ Ư(3)
Ta có: Ư(3) = {-3, -1, 1, 3}
Suy ra: n = {-4; -2; 0; 2}
Vậy: Tập hợp các số tự nhiên thỏa mãn điều kiện đề bài là: n = {0; 2}
5) Có 4 cặp thỏa mãn đề bài là:
x =1; y = 35
x =5; y = 7
x =7; y = 5
x =35; y = 1
6) Theo bài ra ta có:
a + b – c = -3 (1)
a - b + c = 11 (2)
a - b - c = -1 (3)
Lấy (1) + (2), ta được: 2a = 8, suy ra: a = 4
Lấy (1) - (3), ta được: 2b = -2, suy ra: b = -1
Lấy (2) - (3), ta được: 2c = 12, suy ra: c = 6
Vậy: (a;b;c) = (4;-1;6)
7) Ta có:
n2 + n = 56
n(n + 1) = (-8).(-7)
Vậy: n = -8
8) Theo bài ra ta có:
30 + 29 + 28 + ... + 2 + 1 = (1 + 2 + 3 + 4 + 5) . x
(30 + 1) x 30 : 2 = 15 . x
x = 465 : 15
x = 31
9) Ta có:
ab - ac + bc - c2 = -1
a(b - c) + c(b - c) = -1
(a + c)(b - c) = -1
Vì a, b, c là các số nguyên khác 0, suy ra: a + c = 1; b - c = -1 hay a + c = -1; b - c = 1
Suy ra:
(a + c) = -(b - c)
a = -b
a/b = -1
10) Theo bài ra ta có:
(x2 + 4x + 7) ⋮ (x + 4)
[x(x + 4) + 7] ⋮ (x + 4)
Vì: x(x + 4) ⋮ (x + 4). Suy ra: 7 ⋮ (x + 4)
Suy ra: (x + 4) ∈ Ư(7)
Ta có: Ư(7) = {-7; -1; 1; 7}
Suy ra: x = {-11; -5; -3; 3}
vi a chia het cho 21 va 28 suy ra
a thuộc bội chung của 21 và 28 vay
21=3*7
28=2mu2 *7
bcnn(21;24)=2mu2*3*7=84
bc(21;24)=b(84)={0;84;168;252 ...}
vì a chia hết cho 21 và 24 và a<100 nên a =84