K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

Ta có a: 6 dư 5
=> a= 6k+5 với k ϵ N
có: a2 = (6k+5)2 = 36k2+ 60k+25
vì 36k2⋮6 ; 60k⋮6 ; 25 : 6 dư 1
=> a2 chia 6 dư 1 
 

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:

Vì $a$ chia $6$ dư $5$ nên đặt $a=6k+5$ với $k$ nguyên. 

Khi đó: $a^2=(6k+5)^2=36k^2+25+60k=6(6k^2+10k+4)+1$ chia $6$ dư $1$

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

15 tháng 10 2023

a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2

\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)

b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3

\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)

 

15 tháng 10 2023

a) Số a có dạng: \(a=3k+2\) 

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)

\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)

Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3 

\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1

b) Số a có dạng là: \(a=5k+3\) 

\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)

\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)

Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5

\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4 

11 tháng 9 2018

Ta co:

\(a=5n+4\)

\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)

cai này chia 5 dư 1

11 tháng 9 2018

Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)

Vì hai số đều là các số tự nhiên

Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 =  25k2 + 40k + 16

Vì 25k2 chia hết cho 5

     40k chia hết cho 5

Mà 16 chia 5 dư 1

Vậy 25k2 + 40k + 16 chia 5 dư 1

=> ĐPCM

30 tháng 6 2015

Dễ mà . Em học lớp 6 cũng làm được.

Giả sử a=(c+3) ; b =(d+2)  (c ;d chia hết cho 5)

a.b=(c+3) . (d+2)

a.b=(c+3) . d + (c+3) .2

a.b=c.d+3.d+2.c+6

vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1

 

29 tháng 6 2015

Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !

27 tháng 5 2018

Theo đề bài ta có:

          a\(\equiv\)2(mod 5)

         b\(\equiv\)3 ( mod 5)

=> ab\(\equiv\)2 x 3 ( mod 5 )

      ab\(\equiv\)6 ( mod 5)

      ab\(\equiv\)1 ( mod 5 )

Vậy ab chia 5 dư 1.

               Học tốt nha bn

27 tháng 8 2015

Gọi số có dạng 5k + 4

Ta có: (5k + 4)2 = 25k2 + 16 = 5 x 5 x (k2 + 3) + 1

Vậy chia 5 dư 1

a chia 5 dư 4=>a=5k+4

=>a2=(5k+4)(5k+4)

=(5k+4)5k+4(5k+4)

=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1

=>đpcm

16 tháng 7 2018

Tại sao là a^2=(5k+4)*(5k+4)

Vì sao là ra cái đó bạn

1 tháng 7 2016

Vì a chia 5 dư 4 nên coi a = 5k + 4 (\(k\in Z\))

\(\Rightarrow a^2=\left(5k+4\right)^2=\left(5k+4\right)\left(5k+4\right)\)

\(=25k^2+16+40k\)

\(=5\left(5k^2\right)+5\left(8k\right)+5.3+1\)

\(=5\left(5k^2+8k+3\right)+1\)chia 5 dư 1.