Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Khả Vy Quách - Toán lớp 8 - Học toán với OnlineMath
Gọi số cần tìm là ab (a,b∈N, 0<a<10, 0≤b<10), theo bài ra:
ab.135=m2(m∈N)<=>(10a+b).32.3.5=m2<=>[9a+(a+b)].32.3.5=m2, vì (3,5)=1 nên 9a+(a+b) phải chia hết cho cả 3 và 5.
- Để 9a+(a+b)=10a+b chia hết cho 5 thì b phải = 5
- Để 9a+(a+b) chia hết cho 3 thì a+b=a+5 phải chia hết cho 3, khi đó a=1,4,7
Thử lại thấy a=1 là được. Vậy số cần tìm là 15
2x +1 là số lẻ nên (2x+1)2 là số chính phương lẻ
120 < (2x+1)2 < 200 => (2x+1)2 = 121 ; 169
+) (2x+1)2 = 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6
+) (2x+1)2 = 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7
Vậy....
a) Một số tự nhiên chẵn có dạng 2k (k(N), khi đó (2k)2 = 4k2 là số chia hết cho 4 còn số tự nhiên lẻ có dạng 2k+1 (k(N) ,
Khi đó (2k+1)2 = 4k2+ 4k +1 là số chia cho 4 dư 1. Như vậy một số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1 , do đó không thể viết đựơc dưới dạng 4n+2 hoặc 4n+3(n(N)
b) Một số tự nhiên chỉ có thể viết dưới dạng 3k hoặc 3k± 1 (k( N)
khi đó bình phương của nó có dạng (3k)2 =9k2 là số chia hết cho 3 ,hoặc có dạng (3k± 1) 2 = 9k2 ± 6k +1 là số khi chia cho 3 thì dư 1.
Như vậy một số chính phương không thể viết dưới dạng 3n+2(n(N) ĐPCM.
n là số tự nhiên có 2 chữ số nên 10< hoặc = n <100 do đó 21< hoac bang 2n+1<201
2n+1 là số chính phương lẻ nên 2n+1 chỉ có thể nhận 1 trong các giá trị 25;49;81;121;169
suy ra n chỉ có thể nhận 1 trong các giá trị 12;24;40;60;84
suy ra 3n+1 chỉ có thể nhận 1 trong các giá trị 37;73;121;181;253
Trong các số trên chỉ có số 121=11^2 là 1 số chính phương
Vậy số n tự nhiên có 2 chữ số cần tìm là 40
Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)
cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng
\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
phân tích 10^2n = (10^n)^2
10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được
\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)
=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{3^2}\)
=\(\left(\frac{10^n+8}{3}\right)^2\)
vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương