Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x\left(y-2\right)-y+2=29\\ \Leftrightarrow\left(y-2\right)\left(2x-1\right)=29=29.1=\left(-29\right)\left(-1\right)\)
Với \(\left\{{}\begin{matrix}y-2=29\\2x-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=31\\x=1\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}y-2=1\\2x-1=29\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=15\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}y-2=-1\\2x-1=-29\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-14\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}y-2=-29\\2x-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-27\\x=0\end{matrix}\right.\)
Vậy cặp \(\left(x;y\right)\) cần tìm là \(\left(1;31\right);\left(15;3\right);\left(-14;1\right);\left(0;-27\right)\)
a) 2xy + 4x - y + 5 = 0
=> 2x(y + 2) - y - 2 + 5 = - 2
=> 2x(y + 2) - (y + 2) = - 2 - 5
=> (2x - 1)(y + 2) = - 7
Ta có -7 = -1.7 = -7.1
Lập bảng xét các trường hợp
2x - 1 | 1 | -7 | -1 | 7 |
y + 2 | -7 | 1 | 7 | -1 |
x | 1 | -3 | 0 | 4 |
y | -9 | -1 | 5 | -3 |
Vậy các cặp (x;y) thỏa mãn là (1;-5) ; (-3 ; -1) ; (0 ; 5) ; (4 ; -3)
b) \(\frac{1}{3}-\frac{2}{y}=\frac{x}{2}\left(y\ne0\right)\)
=> \(\frac{x}{2}+\frac{2}{y}=\frac{1}{3}\)
=> \(\frac{xy+4}{2y}=\frac{1}{3}\)
=> 3(xy + 4) = 2y
=> 3xy + 12 = 2y
=> 2y - 3xy = 12
=> y(2 - 3x) = 12
Ta có 12 = 4.3 = 2.6 = 1.12 = -1.(-12) = (-2).(-6) . (-4).(-3)
Lập bảng xét các trường hợp
y | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
2 - 3x | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | -14/3 | 1/3 | 14/3 | 1(tm) | -2/3 | -1/3 | 2(tm) | 5/3 | -4/3 | 0(tm) | 8/3 | 4/3 |
Vậy các cặp (y;x) nguyên thỏa mãn là (-12 ; 1) ; (-3 ; 2) ; (6;0)
Bài 1: Tìm x, y nguyên biết :
a) 4x + 2xy + y = 7
=> 2.x(y-2)+(y-2)=5
=> ( y-2)(2x+1)= 5
Ta có bảng sau:
2x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | 1 | -3 | 7 | 3 |
Điều kiện: t/m
Vậy:....
phần b và c tương tự
a;\(xy+3x-y=8\)
\(\Rightarrow x\left(y+3\right)-\left(y+3\right)=8-3\)
\(\Rightarrow\left(x-1\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+3\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng
x-1 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 2 | -8 | -2 | -4 |
Vậy..............................
b,\(2xy-4x+y=8\)
\(\Rightarrow x\left(2y-4\right)+y=8\)
\(\Rightarrow2x\left(2y-4\right)+\left(2y-4\right)=8-4\)
\(\Rightarrow\left(2x+1\right)\left(2y-4\right)=4\)
\(\Rightarrow\left(2x+1\right);\left(2y-4\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Xét bảng
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
2y-4 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 0 | -1 | 1/2 | -3/2 | 3/2 | -5/2 |
y | 4 | 0 | 3 | 1 | 5/2 | 3/2 |
Vậy.....................................
a)Do 2x+1 chia hết 2x+1 .
=> (2x+1)y chia hết cho 2x+1
Mà (2x+1)y=4x+7
=>4x+7 chia het cho 2x+1
=>2(2x+1)+5 chia hết cho 2x+1
Mà x \(\in\)N ->2x+1\(\in\)N
=>2x+1\(\in\)Ư(5)=(1;5)
=>x\(\in\)(0;2)
Nếu x = 0 => y=7
Nếu x = 2 => 5y=15->y=3
Vậy x=0;y=7
x=2;y=3